為克服單一電氧化的局限性,常將其與光催化、臭氧氧化或生物處理聯用。例如,電氧化-光催化(EO-PC)系統中,TiO?光陽極在紫外光激發下產生電子-空穴對,與電生成的·OH協同降解污染物,對雙酚A的礦化率比單獨電氧化提高40%。電氧化-生物耦合工藝(如前置電氧化提高廢水可生化性)可降低能耗,適用于高濃度有機廢水。此外,電氧化與膜過濾結合(如電化學膜生物反應器)能同步實現污染物降解和固液分離,但需解決膜污染和電極-膜模塊集成設計問題。電化學技術節水效益達200萬元/年。江蘇工業電極

活性層是電極的重要部分,通常由具備電化學活性的材料構成。在電池電極中,活性層材料的特性決定了電池的充放電性能、容量大小等關鍵指標。例如在鋰離子電池中,陰極的活性層材料如鋰鈷氧化物,其晶體結構和化學性質影響著鋰離子的嵌入和脫出過程,進而影響電池的能量密度和循環壽命。在其他電化學反應中,活性層材料能夠通過自身的氧化還原反應,實現電子的轉移,推動反應的進行,是決定電極功能的關鍵因素。導電層在電極中起著至關重要的電子傳輸作用,它的存在保證了電子能夠高效地進出活性層。為了實現良好的導電性能,導電層通常選用高導電率的材料,如金屬銅、銀等。在設計導電層時,還需考慮其與活性層和基底的兼容性,確保各層之間能夠緊密結合,減少電子傳輸過程中的阻力。此外,導電層的厚度和結構也會對電子傳輸效率產生影響,需要根據具體的應用需求進行優化設計,以提高電極的整體性能。天津工業電極需求電化學再生緩蝕劑使更換周期延長至1年。

膜電極是利用隔膜對單種離子的透過性,或膜表面與電解液的離子交換平衡所建立的電勢,來測量電液中特定離子活度的裝置。其中玻璃電極較為典型,常用于測量溶液的酸堿度。它的敏感膜能選擇性地允許氫離子通過,當膜兩側氫離子濃度存在差異時,會產生膜電勢,通過測量膜電勢就能得知溶液中的氫離子濃度,進而確定溶液的 pH 值。離子選擇性電極同樣基于此原理,可對特定離子如鈉離子、鉀離子等進行精細檢測,在環境監測、生物醫學等領域發揮重要作用。
PPCPs(如防曬劑)在水體中持續積累,傳統工藝難以有效去除。電氧化技術可通過自由基攻擊實現PPCPs的分子結構破壞。以磺胺甲惡唑(SMX)為例,BDD電極在10 mA/cm2電流密度下處理2小時,SMX降解率>95%,且毒性評估顯示中間產物無生態風險。關鍵挑戰在于PPCPs的低濃度(ng/L~μg/L)和高背景有機物干擾,需通過提高電極選擇性(如分子印跡改性)或耦合前置吸附工藝來增強靶向降解。此外,實際水體中碳酸鹽等自由基淬滅劑會降低效率,需優化反應條件以抑制副反應。電化學處理使軍團菌檢出率降為零。

隨著全球對清潔能源的需求不斷增加,電解水制氫作為一種高效、環保的制氫方式,受到關注。鈦電極在電解水制氫過程中發揮著關鍵作用。鈦基二氧化銥陽極和鈦基鉑陰極分別在析氧和析氫反應中表現出優異的電催化性能,能夠降低反應的過電位,提高電解效率。通過優化鈦電極的結構和涂層性能,可以進一步提高電解水制氫的效率和降低能耗。同時,鈦電極的穩定性和長壽命確保了電解水制氫設備能夠長期穩定運行,為大規模制氫提供了可靠的技術支持,對推動氫能產業的發展具有重要意義。電化學處理使設備清洗頻率降低80%。江西吸收塔電極設施
電化學-膜技術實現循環水零排放。江蘇工業電極
電極材料是電氧化技術的重要部分,其催化活性、穩定性和成本直接決定應用可行性。目前研究較多的包括金屬氧化物電極(如Ti/RuO?、Ti/PbO?)、BDD電極及碳基電極(如石墨、碳氈)。Ti/RuO?電極具有高析氧電位(1.6 V vs. SHE),適合處理含氯廢水,但易發生析氧副反應;Ti/PbO?電極成本較低且催化活性強,但長期運行后Pb溶出可能造成二次污染。BDD電極因其化學惰性和超高氧析出電位(>2.3 V)成為難降解有機物處理的理想選擇,但制備成本限制了大規模應用。未來趨勢是開發復合涂層電極(如SnO?-Sb/Ti)或非貴金屬催化劑,以兼顧性能與經濟性。江蘇工業電極