金屬氧化生成的腐蝕產物(如Fe?O?、γ-FeOOH)本身具有半導體特性,其禁帶寬度影響電子轉移效率。例如α-Fe?O?(Eg=2.2eV)比γ-Fe?O?(Eg=2.0eV)更穩定。這些氧化物還可能參與光電化學反應,在光照條件下產生額外光電流,導致傳統電位測量出現偏差?,F在研究正嘗試利用這種特性開發自供能監測傳感器。在拉伸應力和腐蝕介質共同作用下,電極材料會發生SCC。以奧氏體不銹鋼在Cl?環境為例,其裂紋擴展速率可達10??-10??mm/s。電化學噪聲檢測發現,SCC過程中會出現特征性的電流/電位突跳信號,這些瞬態響應與位錯滑移、膜破裂等微觀事件直接相關,為早期預警提供了新思路。鋁電極電絮凝處理含油廢水,SS去除率>90%。上海循壞水電極除硬系統

一般循環水管壁的生物膜難以通過常規殺菌劑清洗,電化學生成的氫氧自由基(·OH)可氧化破壞生物膜胞外聚合物(EPS),實現物理剝離。采用脈沖電解模式(頻率100 Hz,占空比50%)時,鈦基電極產生的·OH能滲透至生物膜深層,剝離效率比連續電解提高40%。某制藥廠案例中,每周運行2小時電化學處理,生物膜厚度從500 μm降至50 μm以下,換熱效率恢復至設計值的95%。需注意高濃度·OH可能腐蝕非金屬管道(如PVC),建議配合緩蝕劑投加。江蘇數據中心電極除硬電化學系統處理能力可靈活調節。

鈦電極可以根據不同的標準進行分類。按照涂層材料的不同,可分為鈦基二氧化釕電極、鈦基二氧化銥電極等。鈦基二氧化釕電極常用于氯堿工業電解制氯,其對析氯反應具有良好的電催化活性和穩定性;鈦基二氧化銥電極則在酸性介質中表現出優異的析氧性能,常用于電鍍、電合成等領域。依據電極的用途,又可分為陽極和陰極。陽極在電解過程中發生氧化反應,陰極則發生還原反應,不同的電極用途決定了其表面涂層和結構的設計差異,以滿足特定的電化學需求 。
為克服單一電氧化的局限性,常將其與光催化、臭氧氧化或生物處理聯用。例如,電氧化-光催化(EO-PC)系統中,TiO?光陽極在紫外光激發下產生電子-空穴對,與電生成的·OH協同降解污染物,對雙酚A的礦化率比單獨電氧化提高40%。電氧化-生物耦合工藝(如前置電氧化提高廢水可生化性)可降低能耗,適用于高濃度有機廢水。此外,電氧化與膜過濾結合(如電化學膜生物反應器)能同步實現污染物降解和固液分離,但需解決膜污染和電極-膜模塊集成設計問題。智能電極自動適應水質變化。

氰的反應物是電鍍、冶金廢水的典型毒性成分,電氧化技術能將其高效轉化為低毒產物。在堿性條件下(pH>10),氰根(CN?)在陽極被直接氧化為氰酸根(OCN?),進一步水解為CO?和NH?。采用Ti/RuO?-IrO?電極時,CN?去除率可達99.9%,且電流效率高達70%。若廢水中含重金屬(如Cu2?),電氧化還可同步破絡合并沉淀金屬離子。該技術的重要參數是pH控制(防止HCN揮發)和氯離子濃度(NaCl作為電解質時可生成活性氯強化氧化),實際應用中需避免中間產物(如CNCl)的生成風險。電化學技術處理不改變水溫。北京海水淡化電極設施
電化學脫氮技術氨氮去除率>90%。上海循壞水電極除硬系統
目前相比傳統氯消毒,電氧化可同步殺滅病原體和降解微污染物(如農藥、內分泌干擾物)。采用Ti/IrO?-Ta?O?電極時,大腸桿菌的滅活率在5分鐘內達99.99%,且無消毒副產物(DBPs)生成。對于飲用水中常見的阿特拉津(除草劑),電氧化優先攻擊其叔胺基團,降解路徑明確。實際應用中需平衡消毒效果與能耗(通常<0.5 kWh/m3),并考慮水源水質(如天然有機物的干擾)。形成了模塊化的電氧化設備已經成功作用于農村分散式供水處理。上海循壞水電極除硬系統