MEMS制作工藝-太赫茲脈沖輻射探測:光電導取樣光電導取樣是基于光導天線(photoconductiveantenna,PCA)發射機理的逆過程發展起來的一種探測THz脈沖信號的探測技術。如要對THz脈沖信號進行探測,首先,需將一個未加偏置電壓的PCA放置于太赫茲光路之中,以便于一個光學門控脈沖(探測脈沖)對其門控。其中,這個探測脈沖和泵浦脈沖有可調節的時間延遲關系,而這個關系可利用一個延遲線來加以實現,爾后,用一束探測脈沖打到光電導介質上,這時在介質中能夠產生出電子-空穴對(自由載流子),而此時同步到達的太赫茲脈沖則作為加在PCA上的偏置電場,以此來驅動那些載流子運動,從而在PCA中形成光電流。用一個與PCA相連的電流表來探測這個電流即可,MEMS的單分子免疫檢測是什么?西藏MEMS微納米加工組成

MEMS傳感器的主要應用領域有哪些?
運動追蹤在運動員的日常訓練中,MEMS傳感器可以用來進行3D人體運動測量,通過基于聲學TOF,或者基于光學的TOF技術,對每一個動作進行記錄,教練們對結果分析,反復比較,以便提高運動員的成績。隨著MEMS技術的進一步發展,MEMS傳感器的價格也會隨著降低,這在大眾健身房中也可以廣泛應用。在滑雪方面,3D運動追蹤中的壓力傳感器、加速度傳感器、陀螺儀以及GPS可以讓使用者獲得極精確的觀察能力,除了可提供滑雪板的移動數據外,還可以記錄使用者的位置和距離。在沖浪方面也是如此,安裝在沖浪板上的3D運動追蹤,可以記錄海浪高度、速度、沖浪時間、漿板距離、水溫以及消耗的熱量等信息。 浙江MEMS微納米加工性能弧形柱子點陣加工技術通過激光直寫與刻蝕實現仿生結構,優化細胞黏附與流體動力學特性。

加速度傳感器是很早廣泛應用的MEMS之一。MEMS,作為一個機械結構為主的技術,可以通過設計使一個部件(圖中橙色部件)相對底座substrate產生位移(這也是絕大部分MEMS的工作原理),這個部件稱為質量塊(proofmass)。質量塊通過錨anchor,鉸鏈hinge,或彈簧spring與底座連接。鉸鏈或懸臂梁部分固定在底座。當感應到加速度時,質量塊相對底座產生位移。通過一些換能技術可以將位移轉換為電能,如果采用電容式傳感結構(電容的大小受到兩極板重疊面積或間距影響),電容大小的變化可以產生電流信號供其信號處理單元采樣。通過梳齒結構可以極大地擴大傳感面積,提高測量精度,降低信號處理難度。加速度計還可以通過壓阻式、力平衡式和諧振式等方式實現。
微針器件與生物傳感集成:公司采用干濕法混合刻蝕工藝制備的微針陣列,兼具納米級前列銳度(曲率半徑<100 nm)與微米級結構強度(抗彎剛度≥1 GPa),可穿透角質層無創提取組織間液或實現透皮給藥。在藥物遞送領域,載藥微針通過可降解高分子涂層(如PLGA)實現藥物的緩釋控制。例如,胰島素微針貼片可在30分鐘內完成藥物釋放,生物利用度較皮下注射提升40%。此外,微針表面可修飾金納米顆粒或導電聚合物,集成阻抗/伏安傳感模塊,實時檢測炎癥因子(如IL-6)或病原體抗原,檢測限低至1 pg/mL。在電化學檢測場景中,微針陣列與微流控芯片聯用,可同步完成樣本提取、預處理與信號分析,將皮膚間質液檢測的全程時間縮短至15分鐘,為POCT設備的小型化奠定基礎。PVD磁控濺射、PECVD氣相沉積、IBE刻蝕、ICP-RIE深刻蝕是構成MEMS技術的必備工藝。

MEMS制作工藝ICP深硅刻蝕:
在半導體制程中,單晶硅與多晶硅的刻蝕通常包括濕法刻蝕和干法刻蝕兩種方法各有優劣,各有特點。濕法刻蝕即利用特定的溶液與薄膜間所進行的化學反應來去除薄膜未被光刻膠掩膜覆蓋的部分,而達到刻蝕的目的。因為濕法刻蝕是利用化學反應來進行薄膜的去除,而化學反應本身不具方向性,因此濕法刻蝕過程為等向性。
濕法刻蝕過程可分為三個步驟:
1)化學刻蝕液擴散至待刻蝕材料之表面;
2)刻蝕液與待刻蝕材料發生化學反應;3)反應后之產物從刻蝕材料之表面擴散至溶液中,并隨溶液排出。濕法刻蝕之所以在微電子制作過程中被采用乃由于其具有低成本、高可靠性、高產能及優越的刻蝕選擇比等優點。
但相對于干法刻蝕,除了無法定義較細的線寬外,濕法刻蝕仍有以下的缺點:
1)需花費較高成本的反應溶液及去離子水;
2)化學藥品處理時人員所遭遇的安全問題;
3)光刻膠掩膜附著性問題;
4)氣泡形成及化學腐蝕液無法完全與晶片表面接觸所造成的不完全及不均勻的刻蝕 基于MEMS技術的RF射頻器件是什么?上海MEMS微納米加工性價比
以PI為特色的柔性電子在太赫茲超表面器件上的應用很廣。西藏MEMS微納米加工組成
EBL 電子束光刻技術是實現納米級高精度結構加工的手段,深圳市勃望初芯半導體科技有限公司掌握該技術并將其廣泛應用于 MEMS 器件加工,打破傳統光刻的分辨率局限。相比傳統紫外光刻(小線寬約 1μm),EBL 電子束光刻可實現 50nm 以下的超精細結構加工,且支持多種襯底(PI、硅、金屬、氟化鈣等)。在光學超表面加工中,公司通過 EBL 技術在石英襯底上制作納米柱陣列(柱徑 50nm、高度 100nm),通過調控柱徑與間距,實現對可見光或太赫茲波的精細調控,例如制作的太赫茲超透鏡,可將太赫茲波聚焦光斑直徑縮小至波長的 1/2,大幅提升成像分辨率;在生物傳感芯片加工中,利用 EBL 技術在硅襯底上制作納米級金屬微柱陣列(柱高 200nm、間距 100nm),通過表面等離子體共振效應,增強生物分子檢測信號,使檢測靈敏度提升 10 倍以上。某醫療設備公司借助勃望初芯的 EBL 加工服務,開發出高靈敏檢測芯片,通過納米微柱陣列捕獲病毒抗原,檢測限低至 100 copies/mL,且檢測時間縮短至 20 分鐘,體現了 EBL 技術在 MEMS 加工中的創新價值。西藏MEMS微納米加工組成