·項目2.6Add-inCardLaneMarginingat16GT/s:驗證插卡能通過LaneMargining功能反映接收到的信號質量,針對16Gbps速率。·項目2.7SystemBoardTransmitterSignalQuality:驗證主板發送信號質量,針對2.5Gbps、5Gbps、8Gbps、16Gbps速率。·項目2.8SystemBoardTransmitterPresetTest:驗證插卡發送信號的Preset值是否正確,針對8Gbps和16Gbps速率。·項目2.9SystemBoardTransmitterLinkEqualizationResponseTest:驗證插卡對于鏈路協商的響應時間,針對8Gbps和16Gbps速率。·項目2.10SystemLaneMarginingat16GT/s:驗證主板能通過LaneMargining功能反映接收到的信號質量,針對16Gbps速率。·項目2.11AddinCardReceiverLinkEqualizationTest:驗證插卡在壓力信號下的接收機性能及誤碼率,要求可以和對端進行鏈路協商并相應調整對端的預加重,針對8Gbps和16Gbps速率。PCI-E硬件測試方法有那些辦法;智能化多端口矩陣測試PCI-E測試調試

PCIe4.0的接收端容限測試在PCIel.0和2.0的時代,接收端測試不是必需的,通常只要保證發送端的信號質量基本就能保證系統的正常工作。但是從PCle3.0開始,由于速率更高,所以接收端使用了均衡技術。由于接收端更加復雜而且其均衡的有效性會影響鏈路傳輸的可靠性,所以接收端的容限測試變成了必測的項目。所謂接收容限測試,就是要驗證接收端對于惡劣信號的容忍能力。這就涉及兩個問題,一個是惡劣信號是怎么定義的,另一個是怎么判斷被測系統能夠容忍這樣的惡劣信號。智能化多端口矩陣測試PCI-E測試檢修如果被測件是標準的PCI-E插槽接口,如何進行PCI-E的協議分析?

這個軟件以圖形化的界面指導用戶完 成設置、連接和測試過程,除了可以自動進行示波器測量參數設置以及生成報告外,還提供 了Swing、Common Mode等更多測試項目,提高了測試的效率和覆蓋率。自動測試軟件使 用的是與SigTest軟件完全一樣的分析算法,從而可以保證分析結果的一致性。圖4.15是 PCIe4.0自動測試軟件的設置界面。
主板和插卡的測試項目針對的是系統設備廠商,需要使用PCI-SIG的測試夾具測 試,遵循的是CEM的規范。而對于設計PCIe芯片的廠商來說,其芯片本身的性能首先要 滿足的是Base的規范,并且需要自己設計針對芯片的測試板。16是一個典型的PCIe 芯片的測試板,測試板上需要通過扇出通道(Breakout Channel)把被測信號引出并轉換成 同軸接口直接連接測試儀器。扇出通道的典型長度小于6英寸,對于16Gbps信號的插損 控制在4dB以內。為了測試中可以對扇出通道的影響進行評估或者去嵌入,測試板上還應 設計和扇出通道疊層設計、布線方式盡量一致的復制通道(Replica Channel),復制通道和扇 出通道的區別是兩端都設計成同軸連接方式,這樣可以通過對復制通道直接進行測試 推測扇出通道的特性。
PCIe4.0的物理層技術PCIe標準自從推出以來,1代和2代標準已經在PC和Server上使用10多年時間,正在逐漸退出市場。出于支持更高總線數據吞吐率的目的,PCI-SIG組織分別在2010年和2017年制定了PCIe3.0和PCIe4.0規范,數據速率分別達到8Gbps和16Gbps。目前,PCIe3.0和PCle4.0已經在Server及PC上使用,PCIe5.0也在商用過程中。每一代PCIe規范更新的目的,都是要盡可能在原有PCB板材和接插件的基礎上提供比前代高一倍的有效數據傳輸速率,同時保持和原有速率的兼容。別看這是一個簡單的目的,但實現起來并不容易。走pcie通道的M.2接口必定是支持NVME協議的嗎?

在物理層方面,PCIe總線采用多對高速串行的差分信號進行雙向高速傳輸,每對差分 線上的信號速率可以是第1代的2 . 5Gbps、第2代的5Gbps、第3代的8Gbps、第4代的 16Gbps、第5代的32Gbps,其典型連接方式有金手指連接、背板連接、芯片直接互連以及電 纜連接等。根據不同的總線帶寬需求,其常用的連接位寬可以選擇x1、x4、x8、x16等。如 果采用×16連接以及第5代的32Gbps速率,理論上可以支持約128GBps的雙向總線帶寬。 另外,2019年PCI-SIG宣布采用PAM-4技術,單Lane數據速率達到64Gbps的第6代標 準規范也在討論過程中。列出了PCIe每一代技術發展在物理層方面的主要變化。PCIe如何解決PCI體系結構存在的問題的呢?智能化多端口矩陣測試PCI-E測試調試
PCI-E的信號測試中否一定要使用一致性測試碼型?智能化多端口矩陣測試PCI-E測試調試
PCIe 的物理層(Physical Layer)和數據鏈路層(Data Link Layer)根據高速串行通信的 特點進行了重新設計,上層的事務層(Transaction)和總線拓撲都與早期的PCI類似,典型 的設備有根設備(Root Complex) 、終端設備(Endpoint), 以及可選的交換設備(Switch) 。早 期的PCle總線是CPU通過北橋芯片或者南橋芯片擴展出來的,根設備在北橋芯片內部, 目前普遍和橋片一起集成在CPU內部,成為CPU重要的外部擴展總線。PCIe 總線協議層的結構以及相關規范涉及的主要內容。智能化多端口矩陣測試PCI-E測試調試