零部件產業面臨技術、市場與政策的多重挑戰。技術層面,高級零部件(如光刻機鏡頭、航空發動機葉片)仍被德國、日本、美國壟斷,中國在材料純度(如半導體級硅單晶)、制造精度(如納米級加工)等方面存在代差;市場層面,全球化退潮導致“技術脫鉤”風險上升,例如美國《芯片與科學法案》限制對華高級設備出口,歐洲《新電池法》要求2030年電池零部件碳足跡追溯至礦山;政策層面,各國通過補貼扶持本土產業鏈(如歐盟《工業計劃》投資450億歐元發展清潔技術零部件),加劇國際競爭。應對策略需聚焦三點:一是加大基礎研究投入,突破“卡脖子”技術(如中國將EDA軟件、工業軟件納入“十四五”重點攻關清單);二是構建“安全可控”的供...
針對戶外用品金屬部件 “易受風雨侵蝕” 的痛點,澤信新材料基于 MIM 技術,研發高耐腐蝕戶外用品金屬部件,在于材料選型與表面處理工藝的協同。公司選用 316L 不銹鋼粉末作為基礎原料,該材質含鉬 2%-3%,能有效抵抗海水、酸雨等腐蝕性介質,經 MIM 工藝制成的部件,孔隙率≤2%,從根本上減少腐蝕介質滲透路徑。在表面處理環節,澤信新材料采用鈍化 + 噴涂雙層防護:鈍化處理形成厚度 5-8μm 的氧化鉻鈍化膜,提升基材耐腐蝕性能;外層噴涂氟碳涂層(厚度 15-20μm),具備優異的耐候性,經測試鹽霧試驗可達 1000 小時無銹蝕,遠超行業常規 500 小時標準。針對戶外露營裝備生產的金屬連接...
在機械零部件生產領域,澤信新材料通過 MIM 技術與精密檢測體系,確保零部件精度與性能雙達標。生產環節,公司采用德國進口混煉設備,將金屬粉末與粘結劑按 9:1 比例充分混合,控制喂料粘度穩定在 5000-8000Pa?s,保障注射成型時物料流動均勻,避免零部件出現缺料、氣泡等缺陷;脫脂階段采用催化脫脂工藝,精確控制脫脂速率(1-2mm/h),防止零部件變形;燒結階段采用真空燒結爐,真空度維持在 10?3Pa 以下,減少金屬氧化,確保零部件致密度達 96% 以上。精度檢測方面,澤信新材料配備 30 余臺精密檢測設備(如三坐標測量儀、金相顯微鏡),對零部件關鍵尺寸(如孔徑、軸徑、形位公差)進行 1...
自行車變速器零件對傳動精度與輕量化要求高,澤信新材料運用 MIM 技術生產自行車變速器零件,提升傳動效率與騎行體驗。公司選用強度高鋁合金粉末(含硅 1.2%、鎂 0.8%),經 MIM 工藝制成的變速器撥叉、齒輪,密度 2.7g/cm3,較傳統鋼質零件減重 40%,同時抗拉強度達 300MPa,滿足變速器受力需求;通過精密模具設計,零件齒形精度達 GB/T 10095.1-2008 6 級標準,傳動誤差≤0.05mm,換擋響應速度提升 15%。生產過程中,澤信新材料針對變速器零件的耐磨需求,對齒輪表面進行滲氮處理,形成厚度 10-15μm 的滲氮層,表面硬度達 HV 800-1000,換擋次數...
第一步溶劑脫脂(去除 60%-70% 粘結劑),第二步熱脫脂(去除剩余粘結劑),脫脂總時間控制在 8-12 小時,零部件脫脂變形量≤0.2%;燒結環節,根據材料特性設定升溫速率(5-10℃/min)與保溫時間(2-4 小時),鐵基零部件燒結溫度 1350-1400℃,不銹鋼零部件 1380-1420℃,確保零部件致密度達 95% 以上,抗拉強度波動≤50MPa。例如通過優化燒結溫度,316L 不銹鋼零部件的致密度從 93% 提升至 97%,抗拉強度從 550MPa 提升至 650MPa,耐腐蝕性能(鹽霧試驗時間)從 500 小時提升至 1000 小時。澤信新材料通過工藝參數標準化,建立不同材料...
不銹鋼零部件憑借其優異的性能,在眾多領域發揮著不可或缺的作用。在建筑行業,不銹鋼零部件常用于幕墻裝飾、門窗配件以及樓梯扶手等。其出色的耐腐蝕性能夠抵御惡劣天氣和環境污染的侵蝕,確保建筑外觀長期保持美觀和穩定。例如,大型商業建筑的玻璃幕墻,不銹鋼連接件不僅強度高,能承受玻璃的自重和風力等外力,而且不會生銹,不會影響建筑的整體美觀。在食品加工行業,不銹鋼零部件是關鍵設備的重要組成部分。從食品輸送管道、攪拌容器到刀具、模具等,不銹鋼的衛生性能和耐腐蝕性使其成為食品加工的理想材料。它能有效防止食品受到污染,保障食品安全。在醫療器械領域,不銹鋼零部件更是不可或缺。手術器械、植入物等對材料的生物相容性和耐...
自行車變速器零件對傳動精度與輕量化要求高,澤信新材料運用 MIM 技術生產自行車變速器零件,提升傳動效率與騎行體驗。公司選用強度高鋁合金粉末(含硅 1.2%、鎂 0.8%),經 MIM 工藝制成的變速器撥叉、齒輪,密度 2.7g/cm3,較傳統鋼質零件減重 40%,同時抗拉強度達 300MPa,滿足變速器受力需求;通過精密模具設計,零件齒形精度達 GB/T 10095.1-2008 6 級標準,傳動誤差≤0.05mm,換擋響應速度提升 15%。生產過程中,澤信新材料針對變速器零件的耐磨需求,對齒輪表面進行滲氮處理,形成厚度 10-15μm 的滲氮層,表面硬度達 HV 800-1000,換擋次數...
異形復雜零部件正朝著“超精密化、智能化、綠色化”方向演進。超精密化方面,納米級制造技術(如原子層沉積ALD)可使零部件表面粗糙度降至0.8nm,滿足半導體設備、量子計算等前列領域需求;智能化領域,數字孿生技術通過虛擬建模實時映射零部件加工狀態,例如西門子安貝格工廠的“數字雙胞胎”系統將航空零部件生產良率從85%提升至99.2%;綠色化趨勢下,生物可降解材料(如聚乳酸PLA)在醫療植入物中的應用增長明顯,其降解周期與骨愈合周期匹配,避免二次手術;循環制造模式(如激光粉末床熔融的粉末回收率超95%)使材料利用率從傳統工藝的20%提升至80%。產業生態層面,平臺化服務模式興起,例如美國Protola...
脫脂工藝是 MIM 生產中影響零部件尺寸精度的關鍵環節,澤信新材料通過優化脫脂工藝,控制零部件脫脂變形與尺寸偏差。公司采用溶劑脫脂與熱脫脂結合的兩步脫脂法:第一步溶劑脫脂(使用三氯乙烯溶劑),在 50-60℃溫度下浸泡 4-6 小時,去除零部件中 60%-70% 的粘結劑,溶劑脫脂速率均勻,可減少零部件因粘結劑快速流失導致的變形,變形量控制在 0.1% 以內;第二步熱脫脂,在氮氣保護氛圍下,從室溫逐步升溫至 450℃,升溫速率 5℃/h,保溫 2-3 小時,去除剩余粘結劑,熱脫脂階段通過緩慢升溫,避免零部件內部產生應力,進一步控制變形量≤0.1%。為精細控制脫脂尺寸,澤信新材料在脫脂爐內設置多...
異形復雜零部件的設計需平衡功能需求、制造可行性與成本控制三重矛盾。其關鍵挑戰在于:幾何建模需處理自由曲面、非對稱結構等復雜形態,傳統CAD軟件難以精細描述,需采用隱式曲面、點云重構等算法;性能仿真需耦合流體力學、熱力學、結構力學等多物理場,例如燃氣輪機葉片需同時模擬高溫燃氣流動、離心應力與熱疲勞,計算量是標準件的100倍以上;輕量化與強度矛盾,如新能源汽車電池托盤需在保證抗沖擊性能(沖擊能量≥50J)的同時減重30%,需通過拓撲優化生成仿生加強筋結構。技術路徑上,AI驅動的生成式設計成為突破口,例如西門子使用深度學習算法,將航空零部件設計周期從6個月縮短至2周,同時實現重量減輕15%;參數化建...
在汽車行業,澤信新材料聚焦于安全系統與動力系統的異形復雜零部件開發。在安全領域,公司為某德系車企定制的MIM不銹鋼安全帶卷收器齒輪,通過控制粉末氧含量(<80ppm)與燒結氣氛(氫氣還原),將齒形誤差控制在±0.005毫米以內,確保在-40℃至120℃溫域內傳動精度穩定,該產品已通過ECER16安全認證,累計裝車超500萬輛。在動力系統領域,澤信開發的渦輪增壓器廢氣旁通閥軸,采用Inconel718高溫合金粉末,通過熱等靜壓(HIP)后處理將致密度提升至99.9%,在650℃高溫下抗拉強度仍保持1100MPa,壽命較傳統鍛造件提高3倍。目前,公司汽車產品線覆蓋安全系統、動力系統、內飾系統三大領...
異形復雜零部件的質量檢測面臨“形態復雜導致傳統方法失效”與“功能關聯性要求全維度評估”的雙重難題。幾何檢測需應對自由曲面、非對稱結構的測量挑戰,例如航空葉片型面檢測需使用三坐標測量機(CMM)結合激光掃描,單件檢測時間長達4小時,且數據后處理需專業軟件支持;內部缺陷檢測依賴工業CT、超聲相控陣等技術,例如新能源汽車電池殼體的焊接質量檢測需通過X射線穿透10mm厚鋁合金,識別0.1mm級裂紋;性能驗證則需模擬實際工況,如人工關節需在37℃生理鹽水中進行1000萬次疲勞測試,周期長達6個月。然而,當前行業標準嚴重滯后于技術發展,例如3D打印金屬零部件的力學性能標準仍沿用傳統鍛造件指標,導致檢測結果...
澤信新材料深入研究金屬粉末注射成型(MIM)工藝參數對零部件性能的影響,通過優化工藝,提升零部件質量穩定性。在混煉環節,公司控制金屬粉末與粘結劑的混合溫度(150-180℃)與時間(30-60 分鐘),確保喂料均勻性,避免因喂料不均導致零部件密度差異(密度差≤0.1g/cm3);注射環節,調整注射壓力(80-120MPa)與速度(50-100mm/s),防止零部件出現飛邊、缺料,飛邊厚度控制在≤0.05mm。脫脂環節是影響零部件變形的關鍵,澤信新材料采用兩步脫脂法。經過精密設計的異形復雜零部件,在極端環境下仍能保持穩定性能,可靠耐用。德州轉軸零部件報價轉軸零部件的失效模式主要包括疲勞斷裂、磨損...
選型時,澤信新材料技術團隊會根據客戶使用環境(濕度、腐蝕性)、受力情況(負載、沖擊)、成本預算提供建議:例如電動工具齒輪承受高頻沖擊與磨損,推薦滲碳處理的鐵基料零部件;戶外露營裝備連接件需耐風雨侵蝕,推薦 316L 不銹鋼零部件;家電內部電機端蓋無腐蝕風險,推薦成本較低的鐵基料或 304 不銹鋼零部件。公司可提供兩種材質的樣品進行測試,協助客戶驗證性能,同時提供成本分析報告,幫助客戶在性能與成本間找到平衡,目前兩種材質零部件均已實現規模化生產,小訂單量可低至 500 件,滿足客戶小批量測試與大批量生產需求。異形復雜零部件的定制化服務,滿足了不同客戶的個性化需求。常州五金零部件技術指導澤信新材料...
澤信新材料零部件在 LED 照明行業中的散熱與結構協同設計:生產過程中,公司嚴格控制零部件表面粗糙度(Ra≤1.2μm),減少散熱阻力,同時通過精密模具設計,確保散熱鰭片尺寸一致性(偏差≤0.1mm),避免因鰭片變形影響散熱。目前該類 LED 照明零部件已應用于路燈、室內照明、顯示屏等領域,客戶反饋零部件散熱效果良好,LED 照明設備故障率低于 0.5%,澤信新材料可根據 LED 功率、散熱需求,定制散熱器結構與尺寸,同時提供散熱模擬分析,助力 LED 照明企業優化產品散熱設計,提升產品性能。核電設備中的異形密封環通過激光熔覆修復,耐磨層厚度誤差不超過0.05mm。菏澤鎖具零部件價位零部件可按...
機械行業對零部件的標準化與定制化需求并存,澤信新材料通過建立標準化產品庫與定制化服務體系,滿足雙重需求。標準化方面,公司針對機械行業常用零部件(如齒輪、軸套、連接件),建立標準化產品庫,涵蓋 100 余種規格,材料包括鐵基料與不銹鋼,尺寸精度控制在 ±0.02mm,性能參數統一,客戶可直接選用,無需重新設計,交付周期縮短至 7-10 天,降低機械企業采購成本與時間成本。定制化方面,針對機械行業特殊需求(如異形結構、特殊性能),澤信新材料提供全流程定制服務:從需求溝通、結構設計、模具開發到生產交付,全程由專業團隊跟進。異形復雜零部件的表面處理選用微弧氧化技術,形成10μm厚陶瓷涂層。徐州鎖具零部...
針對外觀需求,提供拋光、噴砂、陽極氧化處理:拋光處理使零部件表面粗糙度 Ra≤0.2μm,適用于消費電子外觀件;噴砂處理形成均勻啞光表面,適用于機械內部零件;陽極氧化(適用于鋁合金零部件)可提供多種顏色(如黑色、銀色),提升外觀多樣性。例如為戶外用品生產的金屬部件,澤信新材料先進行鈍化處理,再噴涂氟碳涂層,鹽霧試驗可達 1500 小時,同時外觀保持良好;為消費電子生產的中框零件,通過拋光 + 陽極氧化處理,表面粗糙度 Ra≤0.1μm,顏色均勻度偏差≤ΔE 1.0,完全符合外觀要求。目前公司可根據客戶需求,組合多種表面處理工藝,同時提供表面處理效果測試報告(如鹽霧試驗、耐磨測試、外觀檢測),確...
針對異形復雜零件 “傳統工藝難加工、成本高” 的行業痛點,澤信新材料依托 MIM 技術,實現異形復雜零件的高效、高精度生產。公司通過三維建模與模具仿真技術,優化異形零件的模具結構,針對零件的薄壁、中空、多分支等復雜特征,設計合理的澆口位置與流道尺寸,確保金屬粉末喂料均勻填充模具型腔,避免出現缺料、熔接痕等缺陷。材料選擇上,澤信新材料根據零件使用場景,提供鐵基、不銹鋼、鈦合金等多種材質選擇,其中鈦合金材質零件密度 4.5g/cm3,強度達 800MPa,適配輕量化需求場景(如航空航天零部件)。生產過程中,公司通過脫脂工藝分段控制,針對異形零件的不同壁厚區域(壁厚差異≤2mm),調整脫脂溫度與時間...
汽車行業對零部件的輕量化、高的強度和耐腐蝕性要求嚴苛,MIM技術通過材料創新與工藝優化,成為燃油車與新能源汽車的關鍵制造手段。在燃油車領域,MIM主要用于制造變速箱同步器齒環、渦輪增壓器葉輪、安全氣囊氣體發生器外殼等部件:同步器齒環需承受高頻摩擦與沖擊載荷,MIM制造的銅基粉末冶金齒環通過添加0.5%的石墨增強自潤滑性,可將磨損率降低60%,壽命延長至50萬公里以上;渦輪增壓器葉輪需在800℃高溫下保持高的強度(抗拉強度>800MPa),MIM通過控制鎳基合金粉末的氧含量(<100ppm)與燒結氣氛(氫氣還原),可避免高溫氧化導致的性能衰減。在新能源汽車領域,MIM技術聚焦于電機、電池與電控系...
零部件是工業產品的關鍵構成要素,如同生物體的細胞般支撐著整個系統的運行。從一顆螺絲釘到高精度軸承,從微型傳感器到大型結構件,每一個零部件的設計精度與制造質量,都直接決定了最終產品的性能、可靠性與使用壽命。以汽車發動機為例,其內部包含上千個零部件,活塞、曲軸、氣門等關鍵部件的加工誤差需控制在微米級,任何細微偏差都可能導致動力損失、油耗增加甚至發動機報廢。在航空航天領域,零部件的極端可靠性要求更為嚴苛:一架客機的零部件數量超過200萬個,其中單個鈦合金緊固件的疲勞強度不足,就可能引發災難性事故。因此,零部件的標準化、模塊化與精密化,已成為現代工業從“規模擴張”轉向“質量帶動”的關鍵抓手。針對異形復...
第一步溶劑脫脂(去除 60%-70% 粘結劑),第二步熱脫脂(去除剩余粘結劑),脫脂總時間控制在 8-12 小時,零部件脫脂變形量≤0.2%;燒結環節,根據材料特性設定升溫速率(5-10℃/min)與保溫時間(2-4 小時),鐵基零部件燒結溫度 1350-1400℃,不銹鋼零部件 1380-1420℃,確保零部件致密度達 95% 以上,抗拉強度波動≤50MPa。例如通過優化燒結溫度,316L 不銹鋼零部件的致密度從 93% 提升至 97%,抗拉強度從 550MPa 提升至 650MPa,耐腐蝕性能(鹽霧試驗時間)從 500 小時提升至 1000 小時。澤信新材料通過工藝參數標準化,建立不同材料...
醫療行業對零部件的生物相容性、尺寸精度與表面質量要求極高,澤信新材料通過MIM技術實現了從結構件到功能件的多方位突破。在骨科植入物領域,公司為某跨國企業開發的MIM鈦合金椎間融合器,通過表面微孔結構設計(孔徑200-500微米,孔隙率65%),促進骨細胞長入速度提升40%,該產品已獲得FDA 510(k)認證,累計手術植入超10萬例。在手術器械領域,澤信研發的MIM不銹鋼微創手術鉗,在直徑2毫米的桿體上集成0.3毫米的傳動絲孔,通過模具優化將同軸度誤差控制在±0.01毫米以內,鉗口開合力誤差<0.2N,助力客戶產品通過ISO 13485醫療體系認證。目前,公司醫療產品線涵蓋骨科、外科、內窺鏡三...
風力發電設備在運行中會產生持續振動,澤信新材料針對這一特性,優化零部件結構與材料,提升抗振動性能。在材料選擇上,公司選用高彈性模量的鐵基合金(彈性模量 210GPa),經 MIM 工藝制成的風電零部件(如傳感器支架、電纜夾),在振動頻率 20-2000Hz 范圍內,共振振幅≤0.1mm,避免共振導致的結構損壞;通過添加鎳元素(含量 2%-3%),零部件沖擊韌性提升至 20J/cm2,在突發沖擊載荷下(如強風導致的瞬時振動),無斷裂現象。結構設計上,澤信新材料采用有限元分析軟件,模擬零部件在振動工況下的應力分布,優化結構薄弱區域。這款異形復雜零部件集成了多種功能,實現了空間的較大化利用與高效運作...
風電傳感器支架,通過增加加強筋厚度(從 2mm 增至 3mm),減少振動應力集中,應力最大值從 150MPa 降至 80MPa,低于材料屈服強度(250MPa);電纜夾設計為弧形結構,增加與電纜的接觸面積,減少振動導致的電纜磨損。生產過程中,公司嚴格控制零部件致密度(≥96%),減少內部孔隙,提升抗疲勞性能,經振動疲勞測試(1000 萬次循環),零部件無裂紋產生,疲勞壽命滿足風電設備 20 年使用壽命要求。目前該類抗振動零部件已應用于陸上與海上風電項目,客戶反饋在風力發電設備運行中,零部件故障率低于 0.03%,完全符合風電行業高可靠性需求,澤信新材料可根據風電設備的振動參數,定制零部件抗振動...
戶外用品需兼顧輕量化與耐用性,澤信新材料通過 MIM 技術與材料選擇,實現兩者平衡。公司選用鋁合金粉末(密度 2.7g/cm3)或鈦合金粉末(密度 4.5g/cm3),經 MIM 工藝制成的戶外用品零部件(如登山扣、露營裝備連接件),較傳統鋼質零部件減重 30%-50%,滿足戶外用品輕量化需求;同時通過優化燒結工藝,零部件致密度達 96% 以上,抗拉強度達 300-800MPa,滿足戶外使用的強度要求。例如登山扣零部件,澤信新材料采用 6061 鋁合金粉末,經 MIM 工藝制成后,重量 20g,較鋼質登山扣(40g)減重 50%,抗拉強度達 350MPa,承重測試中可承受 20kN 拉力無斷裂...
風電傳感器支架,通過增加加強筋厚度(從 2mm 增至 3mm),減少振動應力集中,應力最大值從 150MPa 降至 80MPa,低于材料屈服強度(250MPa);電纜夾設計為弧形結構,增加與電纜的接觸面積,減少振動導致的電纜磨損。生產過程中,公司嚴格控制零部件致密度(≥96%),減少內部孔隙,提升抗疲勞性能,經振動疲勞測試(1000 萬次循環),零部件無裂紋產生,疲勞壽命滿足風電設備 20 年使用壽命要求。目前該類抗振動零部件已應用于陸上與海上風電項目,客戶反饋在風力發電設備運行中,零部件故障率低于 0.03%,完全符合風電行業高可靠性需求,澤信新材料可根據風電設備的振動參數,定制零部件抗振動...
轉軸零部件正朝著“智能化、輕量化、集成化”方向演進。智能化方面,內置傳感器(如應變片、溫度傳感器)的智能轉軸可實時監測扭矩、轉速、溫度等參數,例如施耐德電機的智能軸將數據上傳至云端,通過機器學習優化設備運行策略,使能耗降低15%;輕量化領域,碳纖維復合材料軸(如寶馬i3電動車電機軸)較鋁合金軸減重40%,同時抗扭剛度提升25%;集成化趨勢下,轉軸與電機、編碼器、制動器的一體化設計成為主流,例如庫卡KR CYBERTECH納米機器人關節軸將6個功能模塊集成于直徑100mm的軸體內,空間利用率提升60%。產業生態層面,平臺化服務模式興起,例如德國舍弗勒的“軸系即服務”(Shaft-as-a-Ser...
轉軸零部件的失效模式主要包括疲勞斷裂、磨損、腐蝕及振動異響,其中疲勞斷裂占比超60%,是可靠性設計的關鍵挑戰。疲勞斷裂多因交變載荷(如汽車傳動軸的彎曲-扭轉復合應力)導致裂紋擴展,例如某風電齒輪箱軸在運行3年后發生斷裂,根源是軸肩過渡圓角半徑過小(設計值為R2mm,實際為R1.5mm),引發應力集中;磨損則與潤滑狀態、表面硬度相關,如筆記本電腦轉軸的潤滑脂失效會導致開合阻力上升300%,用戶需頻繁更換;腐蝕在海洋環境(如船舶推進軸)或化工場景(如泵軸)中尤為突出,316L不銹鋼軸在海水中的腐蝕速率可達0.1mm/年,需通過鍍層(如鎳基合金)或陰極保護延長壽命。可靠性提升策略包括:設計優化,如采...
汽車行業對零部件的輕量化、高的強度和耐腐蝕性要求嚴苛,MIM技術通過材料創新與工藝優化,成為燃油車與新能源汽車的關鍵制造手段。在燃油車領域,MIM主要用于制造變速箱同步器齒環、渦輪增壓器葉輪、安全氣囊氣體發生器外殼等部件:同步器齒環需承受高頻摩擦與沖擊載荷,MIM制造的銅基粉末冶金齒環通過添加0.5%的石墨增強自潤滑性,可將磨損率降低60%,壽命延長至50萬公里以上;渦輪增壓器葉輪需在800℃高溫下保持高的強度(抗拉強度>800MPa),MIM通過控制鎳基合金粉末的氧含量(<100ppm)與燒結氣氛(氫氣還原),可避免高溫氧化導致的性能衰減。在新能源汽車領域,MIM技術聚焦于電機、電池與電控系...
五金工具零部件對強度與耐用性要求嚴苛,澤信新材料通過 MIM 技術與材料改性,打造高性能五金工具零部件。公司選用鉻鉬鋼粉末(含鉻 1.5%、鉬 0.2%)作為原料,經 MIM 工藝制成的工具零部件(如扳手鉗口、螺絲刀批頭),抗拉強度達 900-1100MPa,沖擊韌性≥15J/cm2,滿足強度作業需求;同時通過等溫淬火工藝,在零部件表面形成 50-100μm 的馬氏體層,硬度提升至 HRC 45-50,耐磨性較傳統工藝產品提升 50%。生產過程中,澤信新材料針對五金工具的復雜結構(如鉗口鋸齒、批頭凹槽),采用多腔模具設計,實現一次成型,生產效率較傳統鍛造提升 3 倍;通過優化燒結曲線,控制零部...