電子束光刻基本上分兩大類,一類是大生產光掩模版制造的電子束曝光系統,另一類是直接在基片上直寫納米級圖形的電子束光刻系統。電子束光刻技術起源于掃描電鏡,**早由德意志聯邦共和國杜平根大學的G.Mollenstedt等人在20世紀60年代提出。電子束曝光的波長取決于電子能量,電子能量越高,曝光的波長越短,大 體在10-6nm量級上,因而電子束光刻不受衍射極限的影響,所以電子束光刻可獲得接近于原子尺寸的分辨率。但是,由于電子束入射到抗蝕劑及基片上時,電子會與固體材料的原子發生“碰撞”產生電子散射現象,包括前散射和背散射電子,這些散射電子同樣也參與“曝光”,前散射電子波及范圍可在幾十納米,從基片上返回...
c、水坑(旋覆浸沒)式顯影(Puddle Development)。噴覆足夠(不能太多,**小化背面濕度)的顯影液到硅片表面,并形成水坑形狀(顯影液的流動保持較低,以減少邊緣顯影速率的變化)。硅片固定或慢慢旋轉。一般采用多次旋覆顯影液:***次涂覆、保持10~30秒、去除;第二次涂覆、保持、去除。然后用去離子水沖洗(去除硅片兩面的所有化學品)并旋轉甩干。優點:顯影液用量少;硅片顯影均勻;**小化了溫度梯度。顯影液:a、正性光刻膠的顯影液。正膠的顯影液位堿性水溶液。KOH和NaOH因為會帶來可動離子污染(MIC,Movable Ion Contamination),所以在IC制造中一般不用。目的...
主要流程光復印工藝的主要流程如圖2:曝光方式常用的曝光方式分類如下:接觸式曝光和非接觸式曝光的區別,在于曝光時掩模與晶片間相對關系是貼緊還是分開。接觸式曝光具有分辨率高、復印面積大、復印精度好、曝光設備簡單、操作方便和生產效率高等特點。但容易損傷和沾污掩模版和晶片上的感光膠涂層,影響成品率和掩模版壽命,對準精度的提高也受到較多的限制。一般認為,接觸式曝光只適于分立元件和中、小規模集成電路的生產。非接觸式曝光主要指投影曝光。在投影曝光系統中,掩膜圖形經光學系統成像在感光層上,掩模與晶片上的感光膠層不接觸,不會引起損傷和沾污,成品率較高,對準精度也高,能滿足高集成度器件和電路生產的要求。但投影曝光...
兩種工藝常規光刻技術是采用波長為2000~4500埃的紫外光作為圖像信息載體,以光致抗蝕劑為中間(圖像記錄)媒介實現圖形的變換、轉移和處理,**終把圖像信息傳遞到晶片(主要指硅片)或介質層上的一種工藝。在廣義上,它包括光復印和刻蝕工藝兩個主要方面。①光復印工藝:經曝光系統將預制在掩模版上的器件或電路圖形按所要求的位置,精確傳遞到預涂在晶片表面或介質層上的光致抗蝕劑薄層上。②刻蝕工藝:利用化學或物理方法,將抗蝕劑薄層未掩蔽的晶片表面或介質層除去,從而在晶片表面或介質層上獲得與抗蝕劑薄層圖形完全一致的圖形。集成電路各功能層是立體重疊的,因而光刻工藝總是多次反復進行。例如,大規模集成電路要經過約10...
世界三 大光刻機 生產商ASML,Nikon和Cannon的*** 代 浸 沒 式 光 刻 機 樣 機 都 是 在 原 有193nm干式光刻機的基礎上改進研制而成,**降低了研發成本和風險。因為浸沒式光刻系統的原理清晰而且配合現有的光刻技術變動不大,目前193nm ArF準分子激光光刻技術在65nm以下節點半導體量產中已經廣泛應用;ArF浸沒式光刻 技 術 在45nm節 點 上 是 大 生 產 的 主 流 技 術。為把193i技術進一步推進到32和22nm的技術節點上,光刻**一直在尋找新的技術,在沒有更好的新光刻技術出現前,兩次曝光技術(或者叫兩次成型技術,DPT)成為人們關 注 的 熱 點...
2019年荷蘭阿斯麥公司推出新一代極紫外光刻系統,**了當今**的第五代光刻系統,可望將摩爾定律物理極限推向新的高度 [5]。中國工程院《Engineering》期刊于2021年組建跨學科評選委員會,通過全球**提名、公眾問卷等多階段評審,選定近五年內完成且具有全球影響力的**工程成就。極紫外光刻系統憑借三大**指標入選:原創性突破:開發新型等離子體光源與反射式光學系統系統創新:整合超精密機械、真空環境控制與實時檢測技術產業效益:支撐全球90%以上**芯片制造需求 [1] [3-4] [7]。截至2024年12月,EUV技術已應用于2nm芯片量產,但仍需優化光源和光刻膠性能。虎丘區購買光刻系統...
集成電路制造中利用光學- 化學反應原理和化學、物理刻蝕方法,將電路圖形傳遞到單晶表面或介質層上,形成有效圖形窗口或功能圖形的工藝技術。隨著半導體技術的發展,光刻技術傳遞圖形的尺寸限度縮小了2~3個數量級(從毫米級到亞微米級),已從常規光學技術發展到應用電子束、 X射線、微離子束、激光等新技術;使用波長已從4000埃擴展到 0.1埃數量級范圍。光刻技術成為一種精密的微細加工技術。光刻技術是指在光照作用下,借助光致抗蝕劑(又名光刻膠)將掩膜版上的圖形轉移到基片上的技術。其主要過程為:首先紫外光通過掩膜版照射到附有一層光刻膠薄膜的基片表面,引起曝光區域的光刻膠發生化學反應;再通過顯影技術溶解去除曝光...
光刻系統是一種用于半導體器件制造的精密科學儀器,是制備高性能光電子和微電子器件不可或缺的**工藝設備 [1] [6-7]。其技術發展歷經紫外(UV)、深紫外(DUV)到極紫外(EUV)階段,推動集成電路制程不斷進步 [3] [6]。當前**的EUV光刻系統已實現2nm制程芯片量產(截至2024年12月) [6],廣泛應用于微納器件加工、芯片制造等領域 [2] [5]。全球**光刻系統主要由ASML、Nikon等企業主導,國內廠商如上海微電子在中端設備領域取得突破 [7]。光刻系統按光源類型分為紫外(UV)、深紫外(DUV)、極紫外(EUV)、電子束及無掩模激光直寫等類別 [2] [5-7]。工...