固態電池測試模具的設計需圍繞固態電池的特性(如依賴界面緊密接觸、對環境敏感等)展開,功能包括:組件準確固定:確保正極、固態電解質、負極的對齊與貼合,避免因位移導致的界面接觸不良(固態電池的離子傳導高度依賴電極-電解質界面的緊密接觸)。密封與環境隔離:隔絕空氣、水分(部分固態電解質如硫化物易水解)、雜質,防止其對電池材料(如鋰金屬負極、敏感電解質)的腐蝕或性能干擾。環境參數調控:模擬實際使用中的溫度(-40~150℃)、壓力(0~50MPa)等條件,評估電池在極端環境下的穩定性。測試接口集成:預留電極引出端,方便連接電化學工作站、充放電測試儀等設備,實現阻抗、循環壽命、倍率性能等參數的測量。防漏液設計固態電池測試模具,提升安全性。蘇州三電極固態電池測試模具工裝

測試適配方案原位監測集成:預留EIS接口(頻率范圍10μHz-1MHz)光學觀察窗(藍寶石窗口,支持顯微觀測)多尺寸兼容:模塊化墊片系統,支持?18/20/32mm電池循環測試優化:自動對位機構(定位精度±10μm),支持300次/天快速換樣。制造要點電極接觸面鏡面拋光(Ra≤0.1μm)所有部件100級潔凈室裝配氣路/電路隔離設計通過2000次壓力循環驗證(壓力波動<±2%)。此類模具可實現:?界面阻抗測試誤差<5%?200℃高溫下密封性保持?支持>1000次壓力循環壽命實際案例顯示可提升測試效率3倍,同時降低因接觸不良導致的數據偏差達70%。建議與電化學工作站聯動時采用光纖隔離,避免高壓干擾。成都學校實驗室固態電池測試模具廠家緊湊型固態電池測試模具,節省實驗空間。

按加壓方式分類手動加壓模具 :原理 :通過手動操作,如旋緊螺絲等方式對電池施加壓力。特點 :結構簡單,操作方便,成本較低,但加壓精度相對較差,壓力穩定性一般。適用于一些對壓力精度要求不高、測試條件較為寬松的實驗場景。電動加壓模具 :原理 :利用電機驅動絲桿等傳動機構,精確控制壓力的施加和調節。特點 :加壓精度高,可實現恒壓控制,且壓力可調范圍較大,能夠滿足不同實驗對壓力的精確要求,但設備成本較高,操作相對復雜。如創能新能源的 CN-BPT-001 電動加壓模具。
壓力可調式固態電池測試模具結構特點:是具備準確壓力調節功能(通常0-50MPa,精度±0.1MPa),通過螺桿、液壓或氣動裝置施加壓力,部分型號可實時監測壓力變化,搭配溫度控制模塊(-40~200℃)。適用場景:壓力敏感性研究:固態電解質的離子傳導(尤其硫化物、氧化物)高度依賴界面接觸壓力,該模具可用于量化壓力對電導率、界面阻抗、循環壽命的影響(如研究“壓力-容量保持率”關系)。界面優化測試:評估不同壓力下電極-電解質界面的接觸狀態(如是否存在空隙、裂紋),指導熱壓工藝參數(壓力、時間)的優化。多體系兼容測試:適用于脆性電解質(如氧化物,需均勻壓力避免碎裂)、黏彈性電解質(如聚合物,需動態壓力維持接觸),通過壓力調節匹配不同材料的力學特性。帶溫度監控點的固態電池測試模具。

高溫高壓固態電池測試模具結構特點:采用耐高溫合金(如Inconel)作為殼體,具備寬溫域(-60~300℃)和高壓(0-100MPa)控制能力,密封性能極強(可隔絕水分、氧氣),部分型號集成惰性氣體保護通道(如Ar氣氛圍)。適用場景:極端環境可靠性測試:模擬動力電池在高溫(如汽車引擎附近)、高壓(如密封電池包內)下的性能,測試容量衰減速率、阻抗增長、氣體逸出(若有副反應)等。熱穩定性評估:配合量熱儀(如加速量熱儀ARC),測試固態電池在高溫下的熱失控臨界溫度、放熱速率,評估其安全性(相較于液態電池,固態電池熱失控風險更低,但仍需驗證)。高溫反應機理研究:用于觀察高溫下電解質的分解、電極-電解質界面的副反應(如過渡金屬溶出、界面相生成),尤其適合硫化物(易在高溫下氧化)、氧化物(高溫下可能發生相變)體系。全封閉式固態電池測試模具,保障實驗一致性。山東聚合物固態電池測試模具購買
可重復使用固態電池測試模具,經濟環保。蘇州三電極固態電池測試模具工裝
選擇適合的固態電池測試模具需結合測試目標、電池特性、環境需求及實際操作場景綜合判斷,確保模具能準確匹配測試需求,同時保證數據可靠性與操作效率。根據測試需求,聚焦以下關鍵性能,確保模具能穩定輸出可靠數據:溫度適配范圍根據測試溫度需求選擇模具的耐溫能力:常溫測試(25±5℃):普通模具(塑料/橡膠密封件,耐溫-20~80℃)即可。高低溫循環(-40~120℃):需耐高低溫材料(如氟橡膠密封、不銹鋼結構),且避免部件因熱脹冷縮導致密封失效。高溫長循環(>150℃):需全金屬密封(如激光焊接)+陶瓷絕緣(避免塑料/橡膠熔化)。蘇州三電極固態電池測試模具工裝