我國水環境監測長期以來主要關注的是具體的污染指標,如COD、氨氮、重金屬等。這種監測模式確實能有效地反映某些特定污染物的濃度變化,為污染控制和環境治理提供基礎數據。然而,這種以單一指標為導向的監測方式忽視了水體作為一個復雜生態系統的整體健康狀況,難以評估水環境的生態功能。水環境中,生物群落和生態過程對于維持生態系統的穩定和健康至關重要。例如,水體中的生物多樣性、水生植物的生長狀況、營養元素的循環等,都是衡量水生態系統健康狀況的重要指標。目前的水環境監測體系對這些生態指標關注較少,缺乏系統性的監測和評估。因此,未來的水環境監測應當向更加綜合和生態化的方向發展,將污染指標與生態健康指標結合起來,評估水體的生態功能和可持續性。集數據采集、處理和傳輸于一體,可靠性高,成本低;湖北工業廢水水質監測可視化

為滿足地表水水質在線監測需求,同時解決常規水質監測站占地面積大、建設周期長等問題,賽融科技推出了智能水質在線監測系統,系統采用一體化結構設計,實現水質在線監測系統的靈活布點與安裝,為地表水環境監測、管理、規劃、污染防治提供有效的數據支持。這是一款集采配水、控制、監測、數據傳輸、輔助等多個單元為一體的一體化水質自動監測系統。它適用于河流、湖泊、水庫、飲用水源地、近岸海域以及入河排污口等多種應用場景。浙江雙碳協同水質監測綜合運用地面監測、遙感監測、無人機監測等多種技術手段,從不同空間尺度獲取數據。

BOD簡稱生化需氧量。是指在規定的條件下,微生物分解一定體積水中的某些可被氧化物質,特別是有機物質所消耗的溶解氧的數量。在BOD的測量中,通常規定使用20℃、5天的測試條件,并將結果以氧的濃度(mg/L)表示,記為五日生化需氧量(BOD5)。它是反映水中有機污染物含量的一個綜合指標。COD是以化學方法測量水樣中需要被氧化的還原性物質的量。水樣在一定條件下,以氧化1L水樣中還原性物質所消耗的氧化劑的量為指標,折算成每升水樣全部被氧化后,需要的氧的質量(mg),以mg/L表示。它反映了水中受還原性物質污染的程度。該指標也作為有機物相對含量的綜合指標之一。
在對調查研究結果和有關資料進行綜合分析的基礎上,監測斷面的布設應有代表性,即能較真實地反映水質及污染物的空間分布和變化規律;根據監測目的和監測項目,并考慮人力、物力等因素確定監測斷面和采樣點。有大量廢水排入河流的主要居民區、工業區的上游和下游。較大支流匯合口上游和匯合后與干流充分混合處,入海河流的河口處,受潮汐影響的河段和嚴重水土流失區。湖泊、水庫、河口的主要入口和出口。國際河流出入國境線的出入口處。飲用水源區、水資源集中的水域、主要風景游覽區、水上娛樂區及重大水力設施所在地等功能區。斷面位置應避開死水區及回水區,盡量選擇河段順直、河床穩定、水流平穩、無急流淺灘處。應盡可能與水文測量斷面重合;并要求交通方便,有明顯岸邊標志。系統具有良好的擴展性和兼容性,根據實際應用需要,可增加新的監測參數,并方便儀器安裝與接入;

隨著全球氣候變暖加劇,極端天氣事件頻發,城市內澇已成為許多城市面臨的嚴峻挑戰。面對這一挑戰,人們發現既有預測預警技術手段尚存不足。為了有效應對城市內澇,需要依靠更加先進的預測預警技術,并結合對歷史數據的深度處理和分析。通過安裝高精度、實時性強的水位、流量和水質傳感器,可以實時監測城市排水管網和關鍵區域的水情變化,捕捉微小的水位波動和流量變化,為內澇防控提供準確的基礎數據。同時,結合遙感技術、地理信息系統(GIS)和氣象雷達等先進手段,可以對城市地表水信息、降雨情況進行監測,進一步提高預測的準確性和時效性。利用大數據技術和人工智能算法,可以對歷史數據進行深度挖掘和關聯分析,揭示出內澇與降雨量、排水管網、地形地貌等因素之間的復雜關系,為城市內澇的預測和及時預警提供有力支持。依托大數據與人工智能技術,建立綜合水環境決策支持平臺。上海模塊化單元水質監測流域監測網
儀器采用國家標準方法,和實驗室標準方法數據一致性高,數據可靠性、準確性高,數據可以作為評價的依據。湖北工業廢水水質監測可視化
水質在線監測系統可實現污水、廢水排放和水環境質量的連續在線監測。監測系統包括監測站房、采配水系統、預處理系統、監測設備以及水質在線監測平臺。水質在線監測系統集實時監控功能、自動上報功能、自動報警功能、自動采樣功能、遠程控制功能、數據庫同步功能、智能化數據處理功能、海量數據備份以及離線保護功能等先進技術于一身,并使用了多層安全機制和簡便的人機交互界面,在保證功能完善的同時具備了很強的安全性、可靠性和易操作性,保障監控中心對各污染排放情況和水環境質量監控管理的準確性和及時性。湖北工業廢水水質監測可視化