單器guan和多器官芯片MPS技術旨在模仿器guan功能和/或交流的特定方面,而不是復制整個器guan或人體(10)。例如,與腎臟排泄相關的研究可能無法完全捕獲腎臟功能的復雜性,但是在開發用于研究腎臟生理學特定方面的芯片模型和主要腎小管上皮類器guan方面已經取得了進展。多器官芯片MPS可以提供有關器guan之間相互作用的見解,并可以同時研究不同的過程;合并肝組織或其他易受毒性影響的器guan,為同時研究療效和毒性提供了獨特的機會。英國CN Bio的PhysioMimix器官芯片技術來自于MIT,用于在單器guan和多器guan實驗中對細胞培養條件進行實時控制,以模擬體內生理學。器官芯片分析被譽為更快、更精確的藥物開發和精確醫學的關鍵。肝類器官芯片用途

技術的開發必須考慮到用戶,并且其設計應極大限度地提高可用性和可重復性。提供與自動化兼容的高通量功能可以激勵研究人員,使他們受益于效率的提高和人工成本的降低。在某些情況下,器官芯片還可以減少動物試驗,細胞和試劑的成本,因為許多微流控設備需要更小的體積。為了延長MPS模型的壽命,巨大的努力已經導向為長期實驗提供更大的窗口,可以進行復合劑量和疾病進展的觀察,腸道屏障功能的體外模型和肝病模型已經可以維持數周。英國CNBio的Physiomimix器官芯片正是基于實現此遠大目標而應運而生。更多關于CNBIO器官芯片相關產品問題,歡迎咨詢上海曼博生物!多器官芯片現狀GSK、諾和諾德、羅氏等均已投資多個器官芯片平臺,以開發用于藥物篩選和評估的的創新模型。

英國CNBio的器官芯片系統,包括PhysioMimix實驗室臺式儀器,使研究人員能夠通過快速且預測性的基于人體組織的研究在實驗室中對人體生物學進行建模。該技術彌補了傳統細胞培養與人類研究之間的空白,并朝著模擬人類生物學條件前進,以支持新療法的加速發展。應用范圍包括傳染病,新陳代謝和炎癥。利用器官芯片平臺PhysioMimix,我們生成了NAFLD的人源體外模型。PHH在含脂肪的培養基中培養,該培養基誘導了臨床疾病早期階段的關鍵特征,包括細胞內脂肪負載,白蛋白產生增加和關鍵基因表達的變化(包括那些與代謝和胰島素抵抗有關的基因)。更多關于器官芯片的產品信息,歡迎咨詢上海曼博生物!
器官芯片,也叫微生理系統,是在體外模擬構建的3D人體器guan模型,包括多種活ti細胞,功能組織界面,生物流體等,具有接近人體水平的生理功能,同時還能精確地控制多個系統參數,研究人員可更加直觀地研究機體行為,預測或再現藥物、毒物、輻射、香yan、煙霧、病原體和正常生物給人體帶來的影響。器官芯片系統旨在利用微流控芯片對微流體、細胞及其微環境的控制能力,構建集成微系統來模擬人體組織和器guan功能,為評估藥物和疫苗的有效性和生物安全性以及生物醫學研究提供接近體內生理和病理條件的低成本篩選和研究模型。英國CN Bio的Physiomimix器官芯片正是基于實現此遠大目標而應運而生。器官芯片為組織(如肺、腸、肝、心臟和其他)中的血液和氣流開發了一條狹窄的通道。

英國CNBio的PhysioMimix器官芯片用于在單和多器g實驗中對細胞培養條件進行實時控制,以模擬體內生理學。利用器官芯片平臺PhysioMimix,我們生成了NAFLD的人源體外模型。PHH在含脂肪的培養基中培養,該培養基誘導了臨床疾病早期階段的關鍵特征,包括細胞內脂肪負載,白蛋白產生增加和關鍵基因表達的變化(包括那些與代謝和胰島素抵抗有關的基因)。由于乙型肝炎等肝病發病率的增加,死亡率的上升預計將推動對肝器官芯片微流控模型的需求。此外,用于藥物篩選的肝芯片設備的需求激增預計將推動市場增長。和傳統的靜態2D細胞培養的方式相比,器官芯片能提供細胞自我組裝和生長的接近人體內的環境。肝類器官芯片用途
器官芯片為組織(如肺,腸,肝、心臟和其他)中的血液和氣流開發了一條狹窄的通道。肝類器官芯片用途
通過與麻省理工學院的合作關系,CN-Bio從麻省理工學院生物工程系的器官芯片先鋒和長期合作者琳達·格里菲斯教授(LindaGriffith教授的團隊近期發布了使用該系統的發現)和東北大學的聯合技術持有人麗貝卡·卡利教授處獲得了GuMI設備的許可。在實驗室中模擬人體微生物組是一項挑戰,特別是因為它的數千株細菌中有許多在暴露于氧氣中時無法生長或存活。基于動物和體外細胞的模型為這一研究領域提供了一些見解,然而,到目前為止,還沒有一個系統用于長期體外共培養結腸粘膜屏障,以支持這些高度氧敏感微生物的生長。GuMI裝置使研究人員能夠精確控制系統內的氧氣水平,使厭氧細菌能夠在腸道屏障上方的粘液層中生長,這與人類的生理學非常相似。微泵循環細胞培養基,以確保細胞得到營養,并從系統中去除細菌,以進行微生物組的特定分析。肝類器官芯片用途