中美清潔能源研究中心(CERC)將冰蓄冷技術列為重點合作領域,聚焦高溫相變材料研發與智能控制算法優化。雙方聯合攻關的高溫相變材料可在 3-5℃區間實現高效蓄冷,蓄冷密度較傳統冰漿提升 15%,同時降低蓄冷槽結冰膨脹應力;智能控制算法通過融合氣象預報與建筑負荷數據,動態優化制冰融冰策略,使系統綜合能效提升 12%-18%。在天津落地的中美合作項目頗具突破性,其建成全球較早 CO?跨臨界循環冰蓄冷系統,利用 CO?作為天然制冷劑,相比傳統氟利昂系統減少 99% 溫室氣體排放,系統 COP(性能系數)達 6.8,較常規冰蓄冷系統節能 30% 以上。該項目不僅驗證了 CO?跨臨界技術在蓄冷領域的可行性,更通過中美技術融合為全球低碳制冷提供了前沿示范。美國ASHRAE標準規定,冰蓄冷系統載冷劑管道需采用25mm以上保溫。安徽選擇冰蓄冷

中國《“十四五” 節能減排綜合工作方案》明確提出支持蓄冷技術應用,為相關技術推廣提供政策支撐。多地據此出臺專項補貼政策,如深圳對冰蓄冷項目按蓄冷量給予 60-120 元 /kWh 補貼,切實減輕用戶初期投資壓力;廣州對采用 EMC 模式的項目額外給予 10% 獎勵,鼓勵市場化節能服務模式創新。這些政策從資金層面降低了用戶應用冰蓄冷技術的投資門檻,推動該技術在商業建筑、工業領域等場景的普及,助力實現節能減排目標,促進能源高效利用與綠色發展。安徽選擇冰蓄冷楚嶸冰蓄冷系統支持應急供冷模式,保障關鍵設施斷電不停機。

歐盟通過 ErP 能效指令推動建筑空調系統低碳化,明確對冰蓄冷技術提出能效與環保要求。指令規定蓄冷系統季節性能系數(SEER)需≥5.5,以量化指標倒逼設備效率提升,較傳統系統節能 15% 以上。同時,禁用含氫氯氟烴(HCFC)載冷劑,因這類物質對臭氧層有破壞作用,推動行業采用環保型乙二醇溶液或天然工質。此外,指令要求企業提供冰蓄冷系統全生命周期環境影響聲明,涵蓋設備制造、運行到報廢的碳排放數據,引導產業鏈優化設計。這些措施通過能效管控與環保標準并行,加速冰蓄冷技術在歐洲建筑領域的低碳應用。
冰蓄冷系統通過夜間制冰儲冷、白天釋冷供冷的運行模式,可明顯降低城市熱島強度。傳統空調系統日間運行時,外機散熱加劇地表溫度升高,而冰蓄冷系統將 80% 以上的制冷過程轉移至夜間,減少日間空調外機排熱。某研究表明,在 10 平方公里區域內規?;渴鸨罾湎到y后,夏季地表溫度可下降 0.8-1.2℃,這得益于夜間低溫制冰過程中設備散熱與環境溫度的自然耦合,同時減少了日間建筑向室外的顯熱排放。例如某新城集中應用冰蓄冷技術后,商業區夏季午后平均溫度較周邊區域低 1.1℃,人行道地表溫度下降明顯,不僅改善了城市微氣候環境,還降低了周邊居民的熱應激風險,體現了需求側節能技術在城市生態優化中的協同價值。廣東楚嶸參與制定冰蓄冷行業標準,推動技術規范化應用。

將冰蓄冷系統送風溫度從 4℃進一步降至 - 2℃,理論上可使風機能耗再降低 40%,但需攻克結露控制與氣流組織兩大技術難點。送風溫度驟降會使空氣含濕量急劇下降,若管道保溫不足或風口設計不當,極易在表面形成冷凝水;同時,低溫氣流密度增大,傳統風口布局可能導致送風距離縮短、溫度場不均勻。某實驗室通過三項技術創新實現突破:采用 30mm 厚復合保溫材料搭配防潮隔汽層,使管道表面溫度維持在DP以上;運用 CFD 氣流模擬優化送風口角度與風速,形成穩定的低溫送風射流;配置智能濕度控制系統,根據室內負荷動態調整送風含濕量。實測數據顯示,-2℃送風在辦公樓場景下,室內溫度場均勻度達 ±0.5℃,人員舒適度與傳統 7℃送風無明顯差異,為超高層建筑空調系統深度節能提供了技術驗證。廣東楚嶸冰蓄冷技術結合熱回收,融冰余熱用于生活熱水供應。安徽選擇冰蓄冷
冰蓄冷與光伏結合,夜間制冰儲存清潔能源,實現“綠電冷庫”。安徽選擇冰蓄冷
據MarketsandMarkets數據顯示,2024年全球冰蓄冷市場規模已達38億美元,預計到2029年將增長至62億美元,期間復合年增長率(CAGR)為10.2%。亞太地區在全球市場中占據重要地位,貢獻超過50%的份額,成為推動市場增長的關鍵區域。其中,中國因“雙碳”目標下政策對蓄冷技術的支持,以及超高層建筑和數據中心的規模化應用,成為亞太地區的主要增長動力;印度隨著基礎設施建設升級,對節能空調系統需求激增,冰蓄冷技術在商業建筑領域的應用快速拓展;東南亞國家如新加坡、馬來西亞等,依托區域供冷項目和可再生能源結合示范工程,推動市場持續擴張。全球市場的增長態勢,反映出冰蓄冷技術在節能降碳和電網優化方面的綜合價值正獲得普遍認可。編輯分享介紹一下冰蓄冷技術的工作原理冰蓄冷技術相比傳統空調系統的優勢是什么?提供一些冰蓄冷系統的應用案例安徽選擇冰蓄冷