冰蓄冷系統的初投資通常比常規空調系統高 20%-30%,成本增加主要體現在蓄冷裝置、低溫送風管道及控制系統等方面。不過在運行階段,系統可借助峰谷電價差來抵消這部分增量成本。以某辦公樓項目為例,其初投資增加了 800 萬元,但每年可節省電費 150 萬元,靜態投資回收期約為 5.3 年。如果考慮需量電費減免,投資回收期還能縮短至 4 年以內。這意味著雖然冰蓄冷系統前期投入相對較高,但從長期運行來看,憑借電價差帶來的成本節約,能夠在較短時間內收回額外投資,具備良好的經濟性。這種成本收益特性,使得冰蓄冷系統在電價峰谷差較大、空調負荷較高的場景中,具有較強的應用價值和推廣潛力。楚嶸冰蓄冷解決方案助力企業參與電力需求響應,獲取額外收益。廣東工業冰蓄冷平臺

隨著電力現貨市場普及,峰谷電價差可能出現波動收窄,傳統依賴電價差的冰蓄冷系統經濟性面臨挑戰。為解決這一局面,行業正探索通過參與需求響應機制與輔助服務市場獲取額外收益:在需求響應場景中,冰蓄冷系統可根據電網負荷信號動態調整融冰供冷策略,在用電高峰時段減少電力消耗,換取電網公司的響應補貼;輔助服務市場方面,系統可通過提供調峰、調頻等服務創造收益,例如某企業參與廣東電力調峰市場,利用冰蓄冷系統的冷量儲備能力,在電價差縮小時段執行 “蓄冷保供” 策略,年獲得調峰收益超 150 萬元,有效抵消了電價差收窄帶來的經濟性損失。這種 “電價差收益+ 輔助服務收益” 的復合盈利模式,使冰蓄冷系統從單純的節能設備升級為電網靈活性資源,增強了技術在電力市場化改變中的適應能力。廣東工業冰蓄冷平臺冰蓄冷系統的動態制冰技術,通過冰漿循環提升儲能效率20%。

電網針對大工業用戶推行“基本電費+電度電費”的兩部制電價模式,其中基本電費可按變壓器容量或比較大需量來計費。冰蓄冷系統憑借轉移日間用電負荷的特性,能夠有效降低變壓器的裝機容量或需量值。以某工廠為例,其通過應用冰蓄冷技術,將變壓器容量從5000kVA下調至3500kVA,每年基本電費減少42萬元,再加上電度電費的節省,綜合效益十分突出。這種運行模式的優勢在于:一方面,減少變壓器容量可直接降低初期設備投資及后續維護成本;另一方面,通過“移峰填谷”降低比較大需量值,能避免因需量超標產生的額外費用。對于高耗能的工業用戶而言,冰蓄冷系統不僅實現了冷量的高效存儲與利用,還通過電價機制優化了用電成本結構,尤其適用于晝夜負荷差異明顯、電價峰谷差大的工業場景,為企業提升能源管理效率和經濟效益提供了切實可行的解決方案。
在高溫高濕地區部署冰蓄冷系統時,需針對性解決冷凝壓力升高、融冰速度加快等運行挑戰。高溫環境下,制冷機組冷凝器散熱效率下降,導致冷凝壓力驟升,可能觸發設備保護停機;同時,外界高溫會加速蓄冷槽融冰速率,影響日間供冷穩定性。應對這類問題可采取雙重技術方案:一方面增大冷機容量,通過預留設備冗余提升系統抗負荷沖擊能力,如某中東項目在設計階段增加 30% 冷機裝機量,配合高效蒸發式冷凝器,在 50℃環境溫度下仍保持穩定運行;另一方面優化融冰控制策略,采用分段融冰技術,根據日間負荷預測將蓄冷槽分為多個區域,按時段依次融冰,避免冷量集中釋放導致的供需失衡。實測數據顯示,結合冷機冗余與分段融冰的項目,在極端高溫天氣下供冷可靠性提升 40%,融冰效率波動控制在 ±5% 以內,為熱帶地區建筑節能提供了可復制的技術范式。大型商場采用冰蓄冷系統,可轉移60%日間負荷至電價低谷期。

冰蓄冷技術的主要目的是利用水的相變過程(液態→固態)實現能量存儲。在夜間電價低谷期,制冷機組將水冷卻至0℃以下,使其結成冰晶并儲存冷量;白天用電高峰時,冰晶融化吸收環境熱量,為建筑提供空調冷源。這種儲能方式比顯熱儲能(如水蓄冷)效率更高,因為相變過程釋放的潛熱遠大于溫度變化帶來的顯熱。例如,1立方米水在相變時可儲存約334兆焦耳的冷量,而同等體積水溫度下降10℃只能儲存42兆焦耳。這種特性使得冰蓄冷系統在相同體積下能存儲更多冷量,適合空間受限的建筑。冰蓄冷技術通過相變潛熱儲能,單位體積儲能密度是水蓄冷的5倍。廣東工業冰蓄冷平臺
廣東楚嶸冰蓄冷系統支持遠程監控,企業可實時掌握設備運行狀態。廣東工業冰蓄冷平臺
在大型城市綜合體或產業園區中,冰蓄冷技術可作為區域供冷系統的關鍵構成。通過集中制冰、分布式供冷的模式,能夠發揮規模化節能優勢。以廣州大學城區域供冷項目為例,其采用冰蓄冷技術覆蓋 10 所高校及商業設施,相較傳統分散式空調系統節能率超 30%,每年可減少約 5 萬噸 CO?排放。這種區域化應用模式不僅降低了單體建筑的設備投資與運維成本,還通過集中調控優化冷量分配,實現能源的高效利用。同時,規模化的蓄冷設施可與電網調度協同,進一步強化 “移峰填谷” 效應,為城市集中供能系統的低碳化轉型提供了可復制的實踐范例,尤其適用于功能復合、冷負荷集中的大型園區場景。廣東工業冰蓄冷平臺