電子束曝光推動全息存儲技術突破物理極限,通過在光敏材料表面構建三維體相位光柵實現信息編碼。特殊設計的納米級像素單元可同時記錄振幅與相位信息,支持多層次數據疊加。自修復型抗蝕劑保障存儲單元10年穩定性,在銀行級冷數據存儲系統中實現單盤1.6PB容量。讀寫頭集成動態變焦功能,數據傳輸速率較藍光提升100倍,為數字文化遺產長久保存提供技術基石。電子束曝光革新海水淡化膜設計范式,基于氧化石墨烯的分形納米通道優化水分子傳輸路徑。仿生葉脈式支撐結構增強膜片機械強度,鹽離子截留率突破99.97%。自清潔表面特性實現抗生物污染功能,在海洋漂浮式平臺連續運行5000小時通量衰減低于5%。該技術使單噸淡水能耗降至2kWh,為干旱地區提供可持續水資源解決方案。人才團隊利用電子束曝光技術研發新型半導體材料。江西微納光刻電子束曝光

在電子束曝光工藝優化方面,研究所聚焦曝光效率與圖形質量的平衡問題。針對傳統電子束曝光速度較慢的局限,科研人員通過分區曝光策略與參數預設方案,在保證圖形精度的前提下,提升了 6 英寸晶圓的曝光效率。利用微納加工平臺的協同優勢,團隊將電子束曝光與干法刻蝕工藝結合,研究不同曝光后處理方式對圖形側壁垂直度的影響,發現適當的曝光后烘烤溫度能減少圖形邊緣的模糊現象。這些工藝優化工作使電子束曝光技術更適應中試規模的生產需求,為第三代半導體器件的批量制備提供了可行路徑。東莞光掩模電子束曝光加工平臺電子束曝光為超高靈敏磁探測裝置制備微納超導傳感器件。

將電子束曝光技術與深紫外發光二極管的光子晶體結構制備相結合,是研究所的另一項應用探索。光子晶體可調控光的傳播方向,提升器件的光提取效率,科研團隊通過電子束曝光在器件表面制備亞波長周期結構,研究周期參數對光提取效率的影響。利用光學測試平臺,對比不同光子晶體圖形下器件的發光強度,發現特定周期的結構能使深紫外光的出光效率提升一定比例。這項工作展示了電子束曝光在光學功能結構制備中的獨特優勢,為提升光電子器件性能提供了新途徑。
電子束曝光設備的運行成本較高,團隊通過優化曝光區域選擇,對器件有效區域進行曝光,減少無效曝光面積,降低了單位器件的制備成本。同時,通過設備維護與參數優化,延長了關鍵部件的使用壽命,間接降低了設備運行成本。這些成本控制措施使電子束曝光技術在中試生產中的經濟性得到一定提升,更有利于其在產業中的推廣應用。研究所將電子束曝光技術應用于半導體量子點的定位制備中,探索其在量子器件領域的應用。量子點的精確位置控制對量子器件的性能至關重要,科研團隊通過電子束曝光在襯底上制備納米尺度的定位標記,引導量子點的選擇性生長。電子束曝光在MEMS器件加工中實現微諧振結構的亞納米級精度控制。

圍繞電子束曝光在半導體激光器腔面結構制備中的應用,研究所進行了專項攻關。激光器腔面的平整度與垂直度直接影響其出光效率與壽命,科研團隊通過控制電子束曝光的劑量分布,在腔面區域制備高精度掩模,再結合干法刻蝕工藝實現陡峭的腔面結構。利用光學測試平臺,對比不同腔面結構的激光器性能,發現優化后的腔面使器件的閾值電流降低,斜率效率有所提升。這項研究充分發揮了電子束曝光的納米級加工優勢,為高性能半導體激光器的制備提供了工藝支持,相關成果已應用于多個研發項目。電子束曝光為神經形態芯片提供高密度、低功耗納米憶阻單元陣列。東莞光掩模電子束曝光加工平臺
電子束刻合為環境友好型農業物聯網提供可持續封裝方案。江西微納光刻電子束曝光
針對電子束曝光在異質結器件制備中的應用,科研團隊研究了不同材料界面處的圖形轉移規律。異質結器件的多層材料可能具有不同的刻蝕選擇性,團隊通過電子束曝光在頂層材料上制備圖形,再通過分步刻蝕工藝將圖形轉移到下層不同材料中,研究刻蝕時間與氣體比例對跨材料圖形一致性的影響。在氮化物 / 硅異質結器件的制備中,優化后的工藝使不同材料層的圖形線寬偏差控制在較小范圍內,保證了器件的電學性能。科研團隊在電子束曝光設備的國產化適配方面進行了探索。為降低對進口設備的依賴,團隊與國內設備廠商合作,測試國產電子束曝光系統的性能參數,針對第三代半導體材料的需求提出改進建議。通過調整設備的控制軟件與硬件參數,使國產設備在 6 英寸晶圓上的曝光精度達到實用要求,與進口設備的差距縮小了一定比例。江西微納光刻電子束曝光