濕法腐蝕是利用腐蝕液和基片之間的化學反應。采用這種方法,雖然各向異性刻蝕并非不可能,但比各向同性刻蝕要困難得多。溶液和材料的組合有很多限制,必須嚴格控制基板溫度、溶液濃度、添加量等條件。無論條件調整得多么精細,濕法蝕刻都難以實現1μm以下的精細加工。其原因之一是需要控制側面蝕刻。側蝕是一種也稱為底切的現象。即使希望通過濕式蝕刻在垂直方向(深度方向)溶解材料,也不可能完全防止溶液腐蝕側面,因此材料在平行方向的溶解將不可避免地進行。由于這種現象,濕蝕刻隨機產生比目標寬度窄的部分。這樣,在加工需要精密電流控制的產品時,再現性低,精度不可靠。光刻主要利用的是光刻膠中光敏分子的單光子吸收效應所誘導的光化學反應。MEMS材料刻蝕代工

在光刻膠技術數據表中,會給出一些參考的曝光劑量值,通常,這里所寫的值是用單色i-線或者BB-UV曝光。正膠和負膠的光反應通常是一個單光子過程與時間沒太大關系。因此,在原則上需要多長時間(從脈沖激光的飛秒到接觸光刻的秒到激光干涉光刻的小時)并不重要,作為強度和時間的產物,作用在在光刻膠上的劑量是光強與曝光時間的產物。在增加光強和光刻膠厚度較大的時候,必須考慮曝光過程中產生的熱量和氣體(如正膠和圖形反轉膠中的N2排放)從光刻膠膜中排出時間因為熱量和氣體會導致光刻膠膜產生熱和機械損傷。襯底的反射率對光刻膠膜實際吸收的曝光強度有影響,特別是對于薄的光學光刻膠膜。玻璃晶圓的短波光強反射約10%,硅晶片反射約30%,金屬薄膜的反射系數可超過90%。哪一種曝光劑量是“比較好”也取決于光刻工藝的要求。有時候稍微欠曝光可以減小這種襯底反射帶來的負面影響。在厚膠情況下,足夠的曝光劑量是后續合理的較短顯影時間的保障。深圳材料刻蝕代工氧等離子普遍用于光刻膠去除。

厚膠光學光刻具有工藝相對簡單、與現有IC工藝流程兼容性好、制作成本低等優點,是用來制作大深度微光學、微機械、微流道結構元件的一種很重要的方法和手段,具有廣闊的應用前景,因而是微納加工技術研究中十分活躍的領域。厚膠光刻是一個多參量的動態變化過程,多種非線性畸變因素的存在,使得對其理論和實驗的研究,與薄膠相比要復雜得多。厚層光刻膠顯影后抗蝕劑浮雕輪廓不僅可以傳遞圖形,而且可以直接作為工作部件、微機械器件封裝材料等。例如SU—8光刻膠具有良好的力學特性,可直接作為微齒輪、微活塞等部件的工作材料。隨著厚膠光學光刻技術的成熟和完善,該技術不僅可以制作大深度、大深寬比臺階型微結構元件,而且可以制作大深度連續面形微結構元件。
基于光刻工藝的微納加工技術主要包含以下過程:掩模(mask)制備、圖形形成及轉移(涂膠、曝光、顯影)、薄膜沉積、刻蝕、外延生長、氧化和摻雜等。在基片表面涂覆一層某種光敏介質的薄膜(抗蝕膠),曝光系統把掩模板的圖形投射在(抗蝕膠)薄膜上,光(光子)的曝光過程是通過光化學作用使抗蝕膠發生光化學作用,形成微細圖形的潛像,再通過顯影過程使剩余的抗蝕膠層轉變成具有微細圖形的窗口,后續基于抗蝕膠圖案進行鍍膜、刻蝕等可進一步制作所需微納結構或器件。自動化光刻設備大幅提高了生產效率和精度。

雙面對準光刻機采用底部對準(BSA)技術,能實現“雙面對準,單面曝光”。該設備對準精度高,適用于大直徑基片。在對準過程中,圖形處理技術起到了至關重要的作用。其基本工作原理是將CCD攝像頭采集得到的連續模擬圖像信號經圖像采集卡模塊的D/A轉換,變為數字圖像信號,然后再由圖像處理模塊完成對數字圖像信號的運算處理,這主要包括圖像預處理、圖像的分割、匹配等算法的實現。為有效提取對準標記的邊緣,對獲取的標記圖像通常要進行預處理以便提取出圖像中標記的邊緣,這包括:減小和濾除圖像中的噪聲,增強圖像的邊緣等。光刻膠根據其感光樹脂的化學結構也可以分為光交聯性、光聚合型、光分解型和化學放大型。隨著波長縮短,EUV光刻成為前沿技術。Si材料刻蝕廠家
實時圖像分析有助于監測光刻過程的質量。MEMS材料刻蝕代工
視頻圖像處理對準技術,是指在光刻套刻的過程中,掩模圖樣與硅片基板之間基本上只存在相對旋轉和平移,充分利用這一有利條件,結合機器視覺映射技術,利用相機采集掩模圖樣與硅片基板的對位標記信號。此種方法看上去雖然與雙目顯微鏡對準有些類似,但是實質其實有所不同。場像處理對準技術是通過CCDS攝像對兩個對位標記圖像進行采集、濾波、特征提取等處理,通過圖像處理單元進行精確定位和匹配參數計算,求得掩模圖樣與硅片基板之間的相對旋轉和平移量,然后進行相位補償和平移量補償,自動完成對準的過程。其光源一般是寬帶的鹵素燈,波長在550~800nm。相對于其他的對準方式其具有對準精度高、結構簡單、可操作性強、效率高的優勢。其對準精度誤差主要來自于圖像處理過程。因此,選擇合適的圖像處理算法顯得尤為重要。MEMS材料刻蝕代工