氰的反應物是電鍍、冶金廢水的典型毒性成分,電氧化技術能將其高效轉化為低毒產物。在堿性條件下(pH>10),氰根(CN?)在陽極被直接氧化為氰酸根(OCN?),進一步水解為CO?和NH?。采用Ti/RuO?-IrO?電極時,CN?去除率可達99.9%,且電流效率高達70%。若廢水中含重金屬(如Cu2?),電氧化還可同步破絡合并沉淀金屬離子。該技術的重要參數是pH控制(防止HCN揮發)和氯離子濃度(NaCl作為電解質時可生成活性氯強化氧化),實際應用中需避免中間產物(如CNCl)的生成風險。脈沖電解模式剝離生物膜效率提升40%。湖北吸收塔電極

電鍍法也是制備鈦電極的重要手段。在電鍍過程中,將鈦基體作為陰極,浸入含有活性金屬離子的電鍍液中,通過施加合適的電流密度,使活性金屬離子在鈦基體表面還原沉積,形成活性涂層。例如,在制備鈦基貴金屬電極時,可以采用電鍍法將金、鉑等貴金屬沉積在鈦基體表面。電鍍法能夠精確控制涂層的厚度和成分,制備出具有均勻涂層的鈦電極。同時,通過調整電鍍液的配方和電鍍工藝參數,還可以制備出具有特殊結構和性能的涂層,滿足不同的應用需求 。北京工業電極設備電化學技術處理循環水無氣味。

電極作為電化學反應的關鍵部件,其工作原理基于與電解質或反應物間的相互作用。在電池里,電極通過與電解質中的離子進行氧化還原反應,實現電子的釋放與接收,進而產生電能。像是常見的干電池,鋅皮作為負極,發生氧化反應釋放電子;碳棒為正極,接受電子促使還原反應發生。在電化學過程中,電極表面的活性位點能催化反應,極大地提升反應速率,降低反應所需的活化能,使原本難以發生的反應得以順利進行。電極的命名方式豐富多樣。部分依據電極的金屬部分來命名,如銅電極、銀電極,簡單直觀地表明了電極的主要材質。有些根據電極活性的氧化還原對中的特征物質命名,像甘汞電極,因其氧化還原對涉及甘汞這一特征物質。還有根據電極金屬部分形狀命名的,例如滴汞電極,其電極金屬部分呈液滴狀,以及轉盤電極,通過特定的旋轉結構來影響電化學反應。此外,依據電極功能命名的也不少,比如參比電極,用于為其他電極提供穩定的電位參考。
隨著全球對清潔能源的需求不斷增加,電解水制氫作為一種高效、環保的制氫方式,受到關注。鈦電極在電解水制氫過程中發揮著關鍵作用。鈦基二氧化銥陽極和鈦基鉑陰極分別在析氧和析氫反應中表現出優異的電催化性能,能夠降低反應的過電位,提高電解效率。通過優化鈦電極的結構和涂層性能,可以進一步提高電解水制氫的效率和降低能耗。同時,鈦電極的穩定性和長壽命確保了電解水制氫設備能夠長期穩定運行,為大規模制氫提供了可靠的技術支持,對推動氫能產業的發展具有重要意義。電極系統處理效果可量化評估。

氯離子對電極氧化的影響主要體現在:①競爭吸附破壞鈍化膜(Cl?與O2?競爭金屬表面位點);②形成可溶性金屬氯配合物(如FeCl?);③形成酸性微環境。當Cl?濃度超過300mg/L時,316不銹鋼的點蝕電位會從+0.35V驟降至+0.05V。值得注意的是,Cl?/SO?2?比值超過0.5時,協同效應會明顯加劇腐蝕,這解釋了為何海水冷卻系統需要特種合金電極。硫酸鹽還原菌(SRB)等微生物可通過獨特機制加速電極氧化:①分泌酸性代謝物;②形成差異通氣電池;③直接參與電子轉移。研究發現SRB存在時,碳鋼腐蝕速率可達無菌環境的5-10倍。更復雜的是,微生物生物膜會導致電極表面pH梯度變化,某些區域pH可低至2-3,這種微區酸化現象常規探頭難以檢測,需借助微電極陣列進行空間分辨測量。電極技術適用于高溫循環水。湖南吸收塔電極設備
電化學沉積回收銅純度達99.5%。湖北吸收塔電極
鈦電極表面的活性涂層賦予了其高催化活性。通過合理設計和制備活性涂層,能夠明顯降低電化學反應的過電位,加快反應速率。以鈦基二氧化釕電極在氯堿工業為例,其表面的二氧化釕涂層能夠有效催化氯離子氧化生成氯氣的反應,使得反應在較低的電壓下進行,降低了能耗。在有機電合成領域,鈦電極的高催化活性能夠促進有機化合物的氧化或還原反應,實現一些傳統化學方法難以完成的合成過程,為有機合成開辟了新途徑,在精細化工產品生產中具有重要應用價值。湖北吸收塔電極