膜電極是利用隔膜對單種離子的透過性,或膜表面與電解液的離子交換平衡所建立的電勢,來測量電液中特定離子活度的裝置。其中玻璃電極較為典型,常用于測量溶液的酸堿度。它的敏感膜能選擇性地允許氫離子通過,當膜兩側氫離子濃度存在差異時,會產生膜電勢,通過測量膜電勢就能得知溶液中的氫離子濃度,進而確定溶液的 pH 值。離子選擇性電極同樣基于此原理,可對特定離子如鈉離子、鉀離子等進行精細檢測,在環境監測、生物醫學等領域發揮重要作用。電極技術適用于高溫循環水。廣東循壞水電極

微電極的工作面積十分微小,其電極面積大小界限雖不十分嚴格,但這種小尺寸特性賦予了它獨特優勢。一方面,微電極實現了電極的微型化,在一些對空間要求極高的微納器件或生物體內檢測場景中,能輕松適配。另一方面,在電化學分析中,盡管整個電極并非微型化,但其極小的工作面積可使電極反應時發生明顯的極化作用。通過微電極指示出的擴散電流與離子濃度存在線性關系,借此可精確測知溶液中離子的濃度,在痕量分析等方面表現出色。廣東數據中心電極設備電化學系統維護簡單方便。

PFAS(如PFOA、PFOS)因C-F鍵能高(~116 kcal/mol),常規方法幾乎無法降解。電氧化技術通過陽極生成的·OH和空穴(h?)攻擊PFAS的羧基或磺酸基,逐步脫氟并縮短碳鏈。BDD電極在10 mA/cm2下處理PFOA 4小時,脫氟率>95%,且無短鏈PFAS積累。優化方向包括:①提高電極對PFAS的吸附能力(如碳納米管修飾);②添加助催化劑(如Ce3?)促進C-F鍵斷裂;③開發電流密度(<2 mA/cm2)的長周期運行模式以降低能耗。該技術已被美國EPA列為PFAS處理推薦技術之一。
PPCPs(如防曬劑)在水體中持續積累,傳統工藝難以有效去除。電氧化技術可通過自由基攻擊實現PPCPs的分子結構破壞。以磺胺甲惡唑(SMX)為例,BDD電極在10 mA/cm2電流密度下處理2小時,SMX降解率>95%,且毒性評估顯示中間產物無生態風險。關鍵挑戰在于PPCPs的低濃度(ng/L~μg/L)和高背景有機物干擾,需通過提高電極選擇性(如分子印跡改性)或耦合前置吸附工藝來增強靶向降解。此外,實際水體中碳酸鹽等自由基淬滅劑會降低效率,需優化反應條件以抑制副反應。電化學技術處理過程安全環保。

氯離子對電極氧化的影響主要體現在:①競爭吸附破壞鈍化膜(Cl?與O2?競爭金屬表面位點);②形成可溶性金屬氯配合物(如FeCl?);③形成酸性微環境。當Cl?濃度超過300mg/L時,316不銹鋼的點蝕電位會從+0.35V驟降至+0.05V。值得注意的是,Cl?/SO?2?比值超過0.5時,協同效應會明顯加劇腐蝕,這解釋了為何海水冷卻系統需要特種合金電極。硫酸鹽還原菌(SRB)等微生物可通過獨特機制加速電極氧化:①分泌酸性代謝物;②形成差異通氣電池;③直接參與電子轉移。研究發現SRB存在時,碳鋼腐蝕速率可達無菌環境的5-10倍。更復雜的是,微生物生物膜會導致電極表面pH梯度變化,某些區域pH可低至2-3,這種微區酸化現象常規探頭難以檢測,需借助微電極陣列進行空間分辨測量。電化學-膜技術實現循環水零排放。甘肅數據中心電極設備
電化學阻垢劑再生復用次數達10次。廣東循壞水電極
農藥廢水(如有機磷、三嗪類)具有高毒性和持久性,電氧化技術能針對性斷裂其關鍵官能團(如P=S、C-Cl鍵)。以毒死蜱為例,BDD電極在pH=3條件下處理2小時,脫氯率>90%,且產物急性毒性明顯降低。優化策略包括:①添加Fe2?引發類Fenton反應(電-Fenton),加速·OH生成;②采用流化床電極增強傳質;③控制電流密度(10-15 mA/cm2)以避免過度析氧副反應。實際應用中需關注農藥轉化中間體的生態風險,建議結合生物毒性測試指導工藝參數選擇。廣東循壞水電極