循環水pH值的穩定對抑制腐蝕和結垢至關重要。電化學pH調節技術通過電解水反應(陽極:2H?O→4H?+O?+4e?;陰極:2H?O+2e?→2OH?+H?)實現酸堿的精細調控。采用分隔式電解槽時,陰極室pH可升至10-11用于防垢,陽極室pH降至2-3用于酸性清洗。某化工廠采用鈦基銥鉭電極系統,通過PLC控制電流密度(5-15 mA/cm2)將循環水pH穩定在8.5±0.3,相比傳統酸堿加藥減少藥劑消耗60%。該技術特別適用于高堿度水質(M-alk>300 mg/L),但需注意陰極室可能生成Ca(OH)?沉淀,需配置超聲波防垢裝置。電化學系統維護簡單方便。江西工業電極需求

循環水中的油類、緩蝕劑和工藝泄漏有機物會加速微生物繁殖,電化學高級氧化(EAOPs)技術可將其降解為小分子或礦化。以BDD電極為例,其產生的羥基自由基(·OH)能無選擇性地攻擊有機物,COD去除率可達70-90%。對于含聚丙烯酸類阻垢劑的循環水,在10 V電壓下處理2小時,TOC降解率超過80%,且降解產物無生物毒性。系統需優化極板間距(<10 mm降低歐姆損耗)和流量分布(避免短流)。某鋼鐵廠案例中,電氧化單元使循環水COD穩定控制在30 mg/L以下,減少了生物粘泥導致的停機清洗頻率。

微電極的工作面積十分微小,其電極面積大小界限雖不十分嚴格,但這種小尺寸特性賦予了它獨特優勢。一方面,微電極實現了電極的微型化,在一些對空間要求極高的微納器件或生物體內檢測場景中,能輕松適配。另一方面,在電化學分析中,盡管整個電極并非微型化,但其極小的工作面積可使電極反應時發生明顯的極化作用。通過微電極指示出的擴散電流與離子濃度存在線性關系,借此可精確測知溶液中離子的濃度,在痕量分析等方面表現出色。
鈦電極作為一種重要的電極材料,憑借其優異的耐腐蝕性、高催化活性和穩定性,在眾多領域得到了廣泛應用,并取得了明顯的經濟效益和社會效益。從氯堿工業到新能源領域,從水處理到生物醫學,鈦電極不斷推動著相關行業的技術進步。然而,面對未來更加復雜和多樣化的需求,鈦電極仍需要不斷創新和發展。通過持續的研究和技術改進,相信鈦電極將在性能上實現更大的突破,在應用領域上得到進一步拓展,為人類社會的可持續發展做出更大的貢獻。.電化學方法使碳鋼腐蝕速率降至0.02mm/a。

循環水管道和換熱器的電化學陰極保護可通過外加電流或犧牲陽極實現。以ImpressedCurrentCathodicProtection(ICCP)為例,鈦鍍鉑陽極(壽命>20年)輸出電流使碳鋼管道電位極化至-850mV(vs.CSE),腐蝕速率降低90%。設計需考慮:①陽極分布(每50米一組);②參比電極監控(Ag/AgCl);③絕緣法蘭(防雜散電流)。某海水循環冷卻系統中,ICCP技術使管道壽命從5年延長至15年以上。循環水排污水的回用是節水關鍵,電化學-超濾(EC-UF)組合工藝可同步去除懸浮物、有機物和微生物。鋁電極電解產生的Al3?水解后形成絮體(如Al(OH)?),通過吸附和電中和作用強化UF膜污染控制,通量衰減率降低60%。典型操作條件:電流密度20A/m2,膜通量50L/(m2·h)。某熱電廠的零排放項目中,EC-UF使反滲透進水SDI<3,回用率從70%提升至90%。電化學臭氧發生器產率比傳統方法高30%。天津吸收塔電極設施
電極材料抗污染性能大幅提升。江西工業電極需求
垃圾滲濾液成分復雜(含腐殖酸、氨氮、重金屬等),電氧化可同步實現有機物降解和脫氮。以Ti/RuO?-IrO?陽極為例,在Cl?存在下,氨氮通過間接氧化轉化為N?(選擇性>70%),同時COD去除率達60-80%。關鍵問題在于滲濾液的高鹽分(如Na?、K?)可能導致電極腐蝕,需采用耐鹽涂層(如Ti/Pt)或預處理脫鹽。此外,耦合生物處理(如前置厭氧消化)可降低電耗,而脈沖電源模式能減少電極鈍化。中試研究表明,處理成本約為8-12元/噸,具備規模化應用潛力。江西工業電極需求