電極作為電化學反應的關鍵部件,其工作原理基于與電解質或反應物間的相互作用。在電池里,電極通過與電解質中的離子進行氧化還原反應,實現電子的釋放與接收,進而產生電能。像是常見的干電池,鋅皮作為負極,發生氧化反應釋放電子;碳棒為正極,接受電子促使還原反應發生。在電化學過程中,電極表面的活性位點能催化反應,極大地提升反應速率,降低反應所需的活化能,使原本難以發生的反應得以順利進行。電極的命名方式豐富多樣。部分依據電極的金屬部分來命名,如銅電極、銀電極,簡單直觀地表明了電極的主要材質。有些根據電極活性的氧化還原對中的特征物質命名,像甘汞電極,因其氧化還原對涉及甘汞這一特征物質。還有根據電極金屬部分形狀命名的,例如滴汞電極,其電極金屬部分呈液滴狀,以及轉盤電極,通過特定的旋轉結構來影響電化學反應。此外,依據電極功能命名的也不少,比如參比電極,用于為其他電極提供穩定的電位參考。電化學方法使碳鋼腐蝕速率降至0.02mm/a。河南工業電極除硬系統

在氯堿工業中,鈦電極的應用具有性意義。傳統的石墨電極在電解過程中存在壽命短、能耗高、產品質量不穩定等問題,而鈦基二氧化釕電極的出現改變了這一現狀。在電解飽和食鹽水生產氯氣、氫氣和氫氧化鈉的過程中,鈦基二氧化釕陽極對析氯反應具有優異的電催化活性和選擇性,能夠在較低的槽電壓下高效地將氯離子氧化為氯氣,降低了電能消耗。同時,鈦電極的長壽命減少了電極更換頻率,提高了生產的連續性和穩定性,降低了生產成本。如今,鈦電極已成為氯堿工業電解槽的主流電極材料,推動了整個行業的技術進步和產業升級。山東電極設施電極系統處理效果可量化評估。

工作電極主要用于研究電化學反應的實驗,研究人員期望在該電極上發生所關注的特定電化學反應。對于工作電極,有諸多要求。它可以是固體,也可以是液體,各類能導電的固體材料基本都能作為工作電極。同時,所研究的電化學反應不能受電極自身其他反應的干擾,并且要能在較寬的電位區域內進行測定,還必須保證電極不與溶劑或電解液組分發生反應。常見的“惰性”固體電極材料如玻碳、鉑、金等常被選用,以滿足實驗需求。醫用電極在醫療領域發揮著重要作用,以心電圖機為例,電極需要被準確放置在患者皮膚上,用于檢測心臟的電活動。心臟在跳動過程中會產生微弱的電信號,這些信號通過皮膚傳導到電極上,電極將其收集并傳輸到心電圖機中,經過處理后形成心電圖,醫生依據心電圖的波形特征,能夠判斷患者心臟的健康狀況,檢測是否存在心律失常、心肌缺血等心臟疾病,為臨床診斷提供關鍵依據,在心血管疾病的診斷中具有不可替代的地位。
電極材料是電氧化技術的重要部分,其催化活性、穩定性和成本直接決定應用可行性。目前研究較多的包括金屬氧化物電極(如Ti/RuO?、Ti/PbO?)、BDD電極及碳基電極(如石墨、碳氈)。Ti/RuO?電極具有高析氧電位(1.6 V vs. SHE),適合處理含氯廢水,但易發生析氧副反應;Ti/PbO?電極成本較低且催化活性強,但長期運行后Pb溶出可能造成二次污染。BDD電極因其化學惰性和超高氧析出電位(>2.3 V)成為難降解有機物處理的理想選擇,但制備成本限制了大規模應用。未來趨勢是開發復合涂層電極(如SnO?-Sb/Ti)或非貴金屬催化劑,以兼顧性能與經濟性。電化學沉積回收銅純度達99.5%。

難溶鹽電極的氧化還原對中有一個組分為難溶鹽或其他固相,它包含三個物相、兩個界面,且在每一相界面上存在著單一的快速遷越過程,甘汞電極(Hg|Hg?Cl?|Cl?)便是典型。在甘汞電極中,甘汞與電解液的溶解平衡受電液中濃度較高的 Cl?所控制,Cl?在 Hg?Cl?| 電液界面上的交換速率很快,這使得甘汞電極的電極電勢極為穩定,因此它成為常用的參比電極之一。部分書刊將這類電極稱為第二類電極,在電化學測量等領域有著不可或缺的地位。電沉積Zn-PO?涂層使清洗周期延長6倍。北京電極設備
循環水電化學處理設備緊湊。河南工業電極除硬系統
循環水系統中微生物滋生會導致生物粘泥、管道腐蝕和換熱效率下降,電極電化學技術可通過原位生成殺菌劑(如活性氯、臭氧和羥基自由基)實現高效消毒。以鈦基涂層電極(Ti/RuO?-IrO?)為例,在含氯循環水中電解產生次氯酸(HClO),當有效氯濃度維持在0.5-2 mg/L時,對異養菌的殺滅率超過99.9%。相比傳統化學加藥(如二氧化氯),電化學法具有精細控量、無藥劑殘留的優勢。系統設計需考慮電流密度(通常1-5 mA/cm2)、流速(>0.5 m/s防止結垢)和電極壽命(涂層穩定性>5年)。某石化廠案例顯示,該技術使殺菌成本降低40%,且避免了化學藥劑對設備的腐蝕風險。河南工業電極除硬系統