在實際應用中,被研究的電極被稱作工作電極(W),在電化學分析法中也稱為指示電極。為了測量工作電極的電勢,通常會將其與參比電極(R)組成二電極測量電池。當需要使工作電極發生極化時,則需額外引入一個輔助電極(C),組成三電極測量電池系統。為降低電液中歐姆電位降(IR)對工作電極電勢測量的誤差,參比電極與電解液連接處常采用毛細管,即魯金毛細管,使其盡可能靠近工作電極,以提高測量的精度。多重電極與單一電極不同,其電極界面上存在多種電極反應。當不太純的鋅浸入硫酸中時,【Zn|H?SO?】電極上就可能同時發生鋅原子失去電子生成鋅離子的反應,以及氫離子得到電子生成氫氣的反應,且這兩個反應的速率都較快,因此該電極屬于二重電極。金屬腐蝕體系常常呈現出多重電極的特性,由于存在多種反應,多重電極的靜態電勢需根據不同反應的極化曲線和極化規律來綜合判斷,其電化學反應過程相對復雜,給研究和應用帶來了一定挑戰。電化學技術處理不改變水溫。湖北循壞水電極設備

微電極的工作面積十分微小,其電極面積大小界限雖不十分嚴格,但這種小尺寸特性賦予了它獨特優勢。一方面,微電極實現了電極的微型化,在一些對空間要求極高的微納器件或生物體內檢測場景中,能輕松適配。另一方面,在電化學分析中,盡管整個電極并非微型化,但其極小的工作面積可使電極反應時發生明顯的極化作用。通過微電極指示出的擴散電流與離子濃度存在線性關系,借此可精確測知溶液中離子的濃度,在痕量分析等方面表現出色。青海電極需求鋁電極電絮凝處理含油廢水,SS去除率>90%。

難溶鹽電極的氧化還原對中有一個組分為難溶鹽或其他固相,它包含三個物相、兩個界面,且在每一相界面上存在著單一的快速遷越過程,甘汞電極(Hg|Hg?Cl?|Cl?)便是典型。在甘汞電極中,甘汞與電解液的溶解平衡受電液中濃度較高的 Cl?所控制,Cl?在 Hg?Cl?| 電液界面上的交換速率很快,這使得甘汞電極的電極電勢極為穩定,因此它成為常用的參比電極之一。部分書刊將這類電極稱為第二類電極,在電化學測量等領域有著不可或缺的地位。
鈦電極可以根據不同的標準進行分類。按照涂層材料的不同,可分為鈦基二氧化釕電極、鈦基二氧化銥電極等。鈦基二氧化釕電極常用于氯堿工業電解制氯,其對析氯反應具有良好的電催化活性和穩定性;鈦基二氧化銥電極則在酸性介質中表現出優異的析氧性能,常用于電鍍、電合成等領域。依據電極的用途,又可分為陽極和陰極。陽極在電解過程中發生氧化反應,陰極則發生還原反應,不同的電極用途決定了其表面涂層和結構的設計差異,以滿足特定的電化學需求 。智能電極系統實現遠程監控。

臭氧氧化可高效降解循環水中的難降解有機物,電化學臭氧發生器(EOG)通過質子交換膜電解水產生高濃度臭氧(50-200gO?/kWh)。以PbO?陽極為例,臭氧產率比傳統電暈法高30%,且無需空氣預處理。某印染廠將EOG集成至循環水系統,色度去除率>95%,并減少了污泥產量。循環水中的Cu、Zn等重金屬可通過電化學沉積在陰極回收。采用旋轉陰極(轉速50rpm)和脈沖電流(占空比20%)時,銅回收純度達99.5%,電流效率>80%。某電鍍廠循環水處理案例顯示,年回收銅2.5噸,經濟效益與環境效益明顯。電化學系統維護簡單方便。內蒙古海水淡化電極設備
電化學方法處理不產生有害副產物。湖北循壞水電極設備
垃圾滲濾液成分復雜(含腐殖酸、氨氮、重金屬等),電氧化可同步實現有機物降解和脫氮。以Ti/RuO?-IrO?陽極為例,在Cl?存在下,氨氮通過間接氧化轉化為N?(選擇性>70%),同時COD去除率達60-80%。關鍵問題在于滲濾液的高鹽分(如Na?、K?)可能導致電極腐蝕,需采用耐鹽涂層(如Ti/Pt)或預處理脫鹽。此外,耦合生物處理(如前置厭氧消化)可降低電耗,而脈沖電源模式能減少電極鈍化。中試研究表明,處理成本約為8-12元/噸,具備規模化應用潛力。湖北循壞水電極設備