五金工具需兼顧高的強度、耐磨性和耐腐蝕性,MIM技術通過材料體系適配和后處理工藝實現性能定制。例如,在制造鉗口類工具時,采用MIM成型的高碳鋼(如AISI1095)經淬火+低溫回火處理后,硬度可達HRC58-62,滿足剪切8mm鋼絲的需求;而針對海洋環境使用的工具,316L不銹鋼通過MIM成型后,經固溶處理和表面鈍化,鹽霧測試可達2000小時無銹蝕,遠超傳統鍍鉻工藝的500小時標準。對于高頻沖擊工具(如沖擊扳手),鎳基合金(如Inconel718)通過MIM制造后,結合熱等靜壓(HIP)處理,密度提升至99.5%,抗拉強度達1200MPa,沖擊韌性較鍛造件提升20%。此外,MIM支持梯度材料設計,如在鉆頭頭部嵌入硬質合金顆粒,實現切削部與柄部的性能差異化,延長工具使用壽命。金屬粉末注射工藝打造的五金螺絲刀,刀頭硬度經特殊處理,擰動螺絲時耐磨且不易磨損變形。上海金屬粉末注射廠家供應

MIM技術兼容多種金屬材料體系,涵蓋低合金鋼、不銹鋼、鈦合金、鎳基合金等,能夠根據應用場景定制材料性能。例如,在消費電子領域,MIM常采用316L不銹鋼制造手機轉軸,利用其優異的耐腐蝕性和抗疲勞性,滿足20萬次以上開合測試的需求;而在航空航天領域,鈦合金(Ti-6Al-4V)通過MIM工藝成型后,密度只為鋼的60%,但比強度(強度/密度)是鋼的4倍,適用于輕量化要求高的結構件。此外,MIM支持材料成分的精確調控,如通過添加0.1%-0.5%的稀土元素,可明顯提升不銹鋼的抗氧化性和高溫穩定性。近年來,多材料MIM技術(如金屬-陶瓷復合成型)進一步拓展了應用邊界,例如在汽車發動機閥門中集成耐磨陶瓷涂層,實現局部區域性能的梯度優化。茂名金屬粉末注射廠家金屬粉末注射而成的轉軸,具備良好的韌性與強度,在承受較大扭矩時不易發生變形或斷裂。

轉軸金屬粉末注射成型工藝流程主要包括喂料制備、注射成型、脫脂和燒結四個關鍵步驟。喂料制備是將金屬粉末與粘結劑在一定的溫度和壓力下混合均勻,形成具有良好流動性和穩定性的喂料。這一步驟對喂料的質量要求極高,因為喂料的性能直接影響到后續注射成型的質量。注射成型是將制備好的喂料通過注射成型機注入到模具型腔中,在高壓和高速的作用下,喂料充滿模具型腔并冷卻固化,形成轉軸的生坯。注射成型過程中需要精確控制注射壓力、溫度、速度等參數,以確保生坯的質量和尺寸精度。脫脂是將生坯中的粘結劑去除的過程,通常采用熱脫脂、溶劑脫脂或催化脫脂等方法。脫脂過程需要嚴格控制溫度和時間,避免生坯出現變形、開裂等缺陷。燒結是將脫脂后的生坯在高溫下進行加熱處理,使金屬粉末顆粒相互結合,形成致密的金屬零件。燒結溫度、時間和氣氛等參數對轉軸的性能有著重要影響,需要根據金屬材料的特性進行優化。
隨著5G、物聯網技術的普及,轉軸需向微型化、集成化方向發展。MIM工藝正探索納米粉末(粒徑<1μm)的應用,以進一步提升零件強度和表面質量。例如,采用氣霧化法制備的納米晶不銹鋼粉末,可使轉軸的屈服強度提升至1500MPa,同時將燒結溫度降低100℃,縮短生產周期。此外,多材料MIM技術(如金屬-陶瓷復合成型)可實現轉軸局部區域的硬度梯度控制,滿足復雜工況需求。然而,該技術仍面臨粉末成本高、模具壽命短等挑戰,需通過循環利用回收粉末、開發耐高溫模具材料等手段降低成本。據預測,到2028年,全球轉軸MIM市場規模將達12億美元,年復合增長率超過15%。澤信MIM零件表面粗糙度Ra≤0.8μm,無需二次加工即可直接使用。

燒結是MIM工藝中實現零件致密化與性能提升的關鍵步驟。其原理是通過高溫(通常為金屬熔點的70%-90%)使粉末顆粒間發生擴散連接,消除孔隙并形成連續金屬基體。例如,316L不銹鋼的燒結溫度為1350-1400℃,保溫時間2-4小時,配合氫氣氣氛還原表面氧化層,可獲得抗拉強度>520MPa、延伸率>30%的零件,性能接近鍛造材料;鈦合金(Ti6Al4V)的燒結則需在真空或氬氣保護下進行,溫度控制在1250-1300℃,以避免晶粒粗化導致韌性下降。燒結后的零件可能需進行后處理以進一步提升性能:熱處理(如固溶+時效)可調整組織結構,提高硬度與耐磨性;表面處理(如拋光、噴砂、PVD鍍層)可改善外觀與耐腐蝕性。某汽車零部件廠商通過優化燒結曲線與后續深冷處理,將變速箱同步器齒環的疲勞壽命從10萬次提升至50萬次,滿足了高級車型的嚴苛要求。澤信引入AI視覺檢測,MIM零件不良率降至0.01%以下。茂名金屬粉末注射廠家
澤信新材料專注MIM技術,將復雜金屬零件生產流程簡化,效率大幅提升。上海金屬粉末注射廠家供應
MIM工藝在環保和資源利用方面具有獨特優勢。首先,其材料利用率高(>95%),明顯減少金屬廢料產生。例如,制造航空發動機葉片時,MIM較傳統鍛造工藝可減少60%的原材料消耗。其次,MIM支持粉末回收利用,通過篩分和再生處理,回收粉末的性能(如流動性、粒徑分布)可恢復至新粉的90%以上,降低對原生金屬的依賴。此外,MIM的粘結劑體系(如聚甲醛、石蠟)在脫脂階段可通過熱解轉化為可燃氣體,用于燒結爐的能源補充,實現能源循環利用。在碳中和背景下,MIM工藝的單位產品碳排放較機加工降低35%,且通過采用綠色電力和低碳合金材料,可進一步將碳足跡減少至傳統工藝的1/3。隨著循環經濟理念的推廣,MIM技術正成為金屬零件制造領域實現可持續發展的關鍵路徑。上海金屬粉末注射廠家供應