結構及工作原理加壓式測試模具:通常由夾持件、壓緊件、底座等組成。利用外部加壓裝置對壓緊件施壓,使壓緊件與夾持件緊密配合,從而對放置在夾持件中的固態電池粉體施加均勻的壓力,模擬固態電池在實際工作中的壓力環境。可加壓且可視化模具:加壓機構采用氣缸作為動力源,通過氣缸的伸縮對模具臺上的固態電池施加穩定且精確的壓力。升降機構控制密封窗的升降,密封窗降下時可密封測試臺凹形槽內部開口,保證測試環境的密封性。感應機構則可實時監測壓力等參數,并通過控制顯示屏顯示相關數據。高穩定性固態電池測試模具,適用于長期實驗。南昌鈉離子固態電池測試模具工裝

應用場景實驗室研發:用于篩選固態電解質材料(如硫化物、氧化物)、優化電極 - 電解質界面修飾工藝(降低界面阻抗),例如通過模具測試不同壓力下電池的循環性能,確定工藝參數。中試線驗證:評估批量生產的固態電池樣品一致性(如容量偏差、阻抗分布),模具需支持自動化上料和多通道測試。行業標準測試:按照 IEC、GB 等標準,測試電池的安全性能(如針刺、擠壓)、長期可靠性,模具需符合標準中對環境和測試條件的規定。武漢創能新能源科技有限公司哈爾濱學校實驗室固態電池測試模具快速原型驗證用固態電池測試模具。

壓力控制系統:模擬真實工況:壓力范圍與精度需求匹配:基礎研究可選0–15T低壓范圍;產業化驗證需24T–30T(如模擬汽車碰撞擠壓測試)。穩定性:壓力波動應≤1MPa/10min,避免數據漂移。加壓方式螺栓/彈簧機械式:成本低,適合固定壓力場景(如教學)。氣動/液壓式:壓力連續可調、精度高(±0.05%FS),支持實時監控,適合科研與失效分析。建議:精密研究選液壓/氣動系統,輔以集成壓力傳感器。尺寸與兼容性:適配不同電池規格模具腔體直徑:覆蓋φ8mm(紐扣電池)至φ25mm(小型軟包),需匹配電池尺寸。多規格模組(如10mm/16mm/25mm)可提升靈活性。有效空間要求:壓力機有效空間需>電池尺寸(如160×160×150mm),避免干涉。示例:φ20mm硫化物電池需選25mm腔體模具,預留膨脹空間。
柱狀 / 軟包測試模具(Cylindrical/Flexible Mold)結構:柱狀模具類似傳統圓柱電池,通過卷繞或疊片方式組裝;軟包模具采用鋁塑膜封裝,搭配定制化夾具施加壓力。適用場景:柔性固態電池、高能量密度電池的測試,模擬實際電池的彎曲、折疊等工況。特點:需解決柔性電解質的界面接觸問題,常采用可形變的電極材料(如石墨烯復合電極)和彈性密封設計。原位測試模具(In-situ Test Mold)結構:集成電化學測試與表征設備(如顯微鏡、光譜儀),模具殼體采用透明材料(如石英玻璃)或預留檢測窗口。適用場景:研究固態電池充放電過程中界面演變、裂紋擴展等微觀機制,常用于高校及科研機構。技術亮點:可同步監測電化學性能與材料結構變化,例如通過原位 AFM 觀察電解質 / 電極界面的應力分布。支持充放電與EIS聯用的測試模具。

按加壓方式分類手動加壓模具 :原理 :通過手動操作,如旋緊螺絲等方式對電池施加壓力。特點 :結構簡單,操作方便,成本較低,但加壓精度相對較差,壓力穩定性一般。適用于一些對壓力精度要求不高、測試條件較為寬松的實驗場景。電動加壓模具 :原理 :利用電機驅動絲桿等傳動機構,精確控制壓力的施加和調節。特點 :加壓精度高,可實現恒壓控制,且壓力可調范圍較大,能夠滿足不同實驗對壓力的精確要求,但設備成本較高,操作相對復雜。如創能新能源的 CN-BPT-001 電動加壓模具。標準化接口固態電池測試模具,便于集成。東莞氧化物固態電池測試模具工裝
適用于干法電極工藝的測試模具。南昌鈉離子固態電池測試模具工裝
壓力施加機制:彈簧加載: 結構簡單,成本低,壓力隨電池厚度變化(壓縮彈簧)或相對恒定(碟簧/貝氏墊圈)。壓力范圍有限。螺栓加載: 手動或扭矩扳手控制壓力,壓力可調但不易實時監控,且操作繁瑣。氣動/液壓加載: 壓力精確可控、可實時監控、可編程。常用于研究級和自動化測試系統。需要外部氣源/液壓源和控制系統。集成壓力傳感器: 高級模具直接內置壓力傳感器(如壓電式、應變片式),實現閉環壓力控制。電連接:通常使用低電阻的金屬柱(如不銹鋼、銅合金、鍍金)嵌入絕緣塊中。確保連接點與電池電極(集流體)接觸良好、穩定、低電阻。考慮電流承載能力。南昌鈉離子固態電池測試模具工裝