直寫型 3D 打印機(Direct Ink Writing,簡稱 DIW)是一種基于材料擠出的增材制造技術,其工作原理是利用注射器中的墨水在壓縮空氣、機械活塞或機械螺桿的驅動下,通過噴嘴或針頭擠出,層層沉積在施工平臺上。該技術可以根據設計好的三維模型路徑,精確控制噴嘴的移動和墨水的擠出,從而實現復雜結構的制造通過精確控制高黏度墨水的擠出和沉積。其優勢在于對多材料(如聚合物、納米復合材料、水凝膠等)的兼容性和靈活的結構設計能力,應用于柔性電子、生物醫療、軟體機器人等領域。醫用3D打印機是一種利用增材制造原理,將三維模型轉化為實際醫用物體的設備。湖南3D打印機技術參數

液態硅膠3D打印機是一種專門用于打印液態硅膠材料的先進設備,通過逐層沉積和固化液態硅膠,能夠制造出具有復雜結構和高性能的三維物體。液態硅膠(LSR)因其無毒、耐熱、高彈性、柔韌性和良好的生物相容性,廣泛應用于汽車、醫療、工業密封和消費品等領域。液態硅膠3D打印技術主要包括液體增材制造(LAM)、材料噴射技術和直接墨水書寫(DIW)。LAM技術由德國RepRap公司開發,通過擠出液態硅膠并用鹵素燈加熱固化,生產出與注塑成型相當的部件。材料噴射技術則通過噴頭將液態硅膠以微滴形式沉積,并用紫外線固化。DIW技術則將液態硅膠逐層沉積并固化,適用于復雜流道的集成。購買3D打印機工廠直銷生物醫療3D打印機在組織工程領域應用,可打印羥基磷灰石等支架用于骨組織再生修復。

生物3D打印機實現肌肉-脂肪細胞共打印,推動細胞培養肉產業化。江南大學陳堅院士團隊開發的雙生物墨水系統,將豬肌肉干細胞(pMuSCs)與脂肪干細胞(pAMSCs)分別包裹于膠原蛋白-殼聚糖(COL-CS)和纖維蛋白原-海藻酸鈉(FIB-SA)水凝膠中,通過交錯打印構建五花肉結構。共分化策略使pAMSCs脂滴生成面積比傳統方法提高155.5%,打印的培養備天然五花肉的紋理和營養特征,蛋白質含量達22%,脂肪分布均勻度達85%。該技術已通過中國農科院安全性評估,預計2027年進入商業化試生產,生產成本控制在200元/公斤以內,為解決全球蛋白供應危機提供新路徑。
森工科技AutoBio系列陶瓷漿料 3D 打印機采用 DIW 墨水直寫成型方式,以擠出技術為,將陶瓷漿料通過特定直徑的噴嘴,按照預設數字模型的路徑逐層擠出沉積。在打印過程中,設備精確控制漿料的流速、擠出壓力和沉積位置,使漿料在基底上層層堆疊,終固化形成三維陶瓷結構。?該系列3D打印機擁有標準版、專業版、旗艦版等多種配置,滿足不同用戶需求。其優勢在于強大的材料兼容性,可支持漿料、液體、懸浮液等十多種不同打印材料,涵蓋傳統陶瓷材料、新型功能陶瓷材料以及摻雜改性后的復合陶瓷材料等。同時,設備配備多種打印模塊及功能模塊,通過材料與模塊的靈活組合,能調制出數十種打印工藝模式。例如,搭配溫度控制模塊,可優化高溫陶瓷材料的成型效果;結合壓力調節模塊,能更好地控制高粘度陶瓷漿料的擠出狀態。森工科技生物醫療3D打印機具備非接觸式自動校準功能,可快速適配多種生物打印平臺。

生物陶瓷3D打印機是一種結合生物陶瓷材料與3D打印技術的先進設備,能夠根據患者的具體需求制造出高度定制化的生物陶瓷制品,應用于骨科、組織工程和藥物遞送等領域。在應用領域,生物陶瓷3D打印展現出巨大的潛力。在骨科,它可基于CT或MRI圖像數據,直接構建與患者解剖結構一致的個性化植入體,提升生物力學性能與骨整合能力。在藥物遞送方面,生物陶瓷材料可作為藥物緩釋載體,通過控制表面微觀結構和材料屬性,實現持續高效給藥。生物陶瓷3D打印技術的優勢在于其高度的定制化能力、設計靈活性和復雜結構制造能力,能夠滿足個性化醫療的需求。然而,該技術也面臨一些挑戰,如材料的生物相容性和力學性能需要進一步優化,以及打印設備和材料成本較高。未來,隨著技術的不斷進步,生物陶瓷3D打印有望在再生醫學和醫療領域實現更多突破,為生物修復提供新的策略。氧化鋯3D打印機是用于打印氧化鋯陶瓷材料的3D打印設備。湖南3D打印機技術參數
食品3D打印機是一種通過精確地控制打印頭,將可食用材料按照預設圖案逐層堆疊,制作出食品的3D打印設備。湖南3D打印機技術參數
生物3D打印機市場呈現高速增長態勢,亞太地區成為創新引擎。根據Coherent Market Insights報告,2025年全球生物3D打印市場規模將達29.5億美元,2025-2032年復合年增長率16.4%。其中,中國市場增速,2025年規模預計突破8億美元,占全球27%份額。技術細分領域中,噴墨生物打印占比(43.4%),主要應用于藥物篩選;而擠出式打印在組織工程領域增長快,年增速達18.7%。關鍵驅動因素包括:NIH再生醫學專項基金年投入超5億美元,中國“十四五”生物制造規劃將3D打印列為重點攻關方向,以及跨國藥企加速布局生物打印模型用于新藥研發。湖南3D打印機技術參數